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Optimal and Practical Real-Time Operation of 

Water Distribution Systems 

 
Elad Salomons 

 

ABSTRACT 

 

Background 

Despite the importance of smart Water Distribution Systems (WDSs) operation in obtaining 

energy-saving and environmentally friendly strategies, in many cases, the operation is still done 

according to expert opinion and rules of thumb which use local control schemes or some ad-

hoc control rules. For example, in Israel, there is not even one water utility that has an 

operational real-time pump scheduling system that considers the changing demands, varying 

pumping electricity tariffs, and operational constraints. In general, the overall control loop of 

the real-time operations of WDS consists of reading the current state of the system, performing 

a demand forecast, optimizing the operations for a limited timeframe (e.g., 24 hours), and 

implementing the first time step of the optimized plan. Then this cycle is repeated for the next 

time step. During the past decades, many academic studies were conducted, and new methods 

were developed for the optimal control of WDSs. Nonetheless, most of the suggested control 

schemes are complex and impractical for real-world applications due to data availability and 

requirements, optimization difficulty, computational efficiency, and lack of central control 

system and technical staff. 

The goal of the study 

This research aimed to explore and create new methodologies for optimal and practical real-

time operation of WDSs while putting special emphasis on the practicality of the developed 

methods. Two control schemes are considered: a local scheme that is applied to a small 

operating zone (e.g., pump and tank) and a central scheme that is aimed to run at a control 

center and optimally operate a larger WDS. 
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Methods 

Two main strategies are adapted to seek practical tools: 1) Showing that the explicit hydraulic 

behavior may be excluded from the optimization formulation thus eliminating the non-linearity 

of the problem and, 2) Using wise binary coding of the discrete decision variables to obtain 

reduced size optimization problem. In addition, a demand forecasting algorithm is developed 

which requires a limited amount of historical demand data, thus making it practical for real-

time applications. 

 

Contribution  

To date, only a limited number of water utilities use a closed-loop optimal pump operations 

control scheme. This research contributes to the water sector by developing practical methods 

for the optimal operation of WDSs. From an academic perspective, previous work focused 

mainly on the open-loop operation while this research concentrates on a closed-loop control 

scheme with online feedback from the system in a rolling horizon mode. The tradeoff between 

the operation practicality and optimality has not been explored before in the literature since 

most of the previous work concentrated on the optimal solution for a given operation horizon 

without simulating the real-time behavior of the system in a close control loop. 
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Introduction 

In 2010, the Unites States' water-related energy use was 12.6% of the total energy consumption 

(Sanders and Webber 2012) of which one third (4% of the total energy consumption) is 

estimated to be consumed by pumping and treating water and wastewater (Goldstein and Smith 

2002). There are about 52,000 community water systems in the US (Copeland and Carter 2017). 

Nearly 85% of the US population is supplied by about 5% of these systems, while the remaining 

95% include many small systems serving 3,300 persons or fewer (Copeland and Carter 2017). 

About 80% of the energy consumed by these utilities is used by motors for pumping. Similar 

values are also reported in Israel with about 55 large water corporations and over 1000 small 

water suppliers. 

Due to environmental regulations and increasing energy costs, energy conservation and 

efficiency are gaining importance in many water utilities. Different activities may help utilities 

with this goal, such as energy management, right sizing elements in the system, upgrading and 

replacing to more efficient equipment, self-generating energy, and optimizing operation. For 

the latter, Smart Water Distribution Systems (WDSs) can play a key role in achieving optimal 

operations which seek energy-saving and environmentally friendly strategies. Nevertheless, in 

many cases, the WDSs operation is still done according to expert opinion and rules of thumb 

which use local control schemes or some ad-hoc control rules. For example, in Israel, there are 

no local water utilities with an operational real-time pump scheduling system that considers the 

changing demands, varying electricity tariffs, and operational constraints.  

During the past decades, many academic studies were conducted, and new methods were 

developed for optimal control of WDSs. In general, the overall control loop of the real-time 

operation of WDS is shown Figure 1. First, the current state of the system is read, usually, from 

a Supervisory Control and Data Acquisition (SCADA) system, a water demand forecast is 

performed for the next operation period, and the electricity tariffs are obtained. Then, an 

optimization problem is formulated and solved to obtain the operational settings (e.g., pumps 

and valve settings) which minimize the operational costs for the next operation period (e.g., 24 

hours). These settings must fulfill the system's constraints, both physical constraints (e.g., 

power connection size) and operator's requirements (e.g., minimum tank levels for the 

reliability of the supply). Finally, the obtained operational settings are implemented for the 

current time and the process is repeated for the next time step. It is important to note that, at the 

beginning of each time step, the initial condition of the system is set (mainly the real tank 
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levels), thus "nullifying" any potential discrepancy between the design results and the real 

situation of the system before solving the next time step problem (Rao and Salomons 2007). 

 

Figure 1: Real-time control loop of WDS operation 

Several aspects of the abovementioned real-time control scheme make the task challenging and, 

in many cases, impractical for real-world applications. The main challenges include: 

• Data availability and requirements. 

• Optimization difficulty. 

• Computational efficiency.  

• Lack of central control system and technical staff. 

Considering the above challenges, this research aimed to explore and create new methodologies 

for the optimal and practical real-time operation of WDS. These tools can help water utilities 

in utilizing advanced optimization methods to gain energy savings and more environmentally 

friendly operation strategies. Starting with a simple network (e.g., pumping station and a service 

tank) the aim was to develop a local control scheme that will be simple to implement at the 

local pumping station's Programmable Logic Controllers (PLC) and is robust enough for 

unknown demand scenarios. At a second stage, a larger and more complex network was used 

to develop a practical and central control scheme. From a practical point of view, considering 

real-world WDS, it can be shown that in many cases the explicit hydraulic behavior may be 

excluded from the optimization problem thus eliminating the non-linearity of the problem. 

Additionally, the size of the optimization problem may be reduced by using wise binary coding 

of the discrete decision variables in the optimization problem. This approach results in a Mixed 
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Integer Linear Program (MILP) with a relatively small number of integer variables which can 

be solved in reasonable time with state-of-the-art commercial solvers such as CPLEX (IBM 

Corp. 2009) or free and open-source solvers such as CBC (Lougee-Heimer 2003). 

The real-time control loop of WDS operation (Figure 1) results in two major challenges: 

demand forecasting and energy cost minimization optimization. Although the real-time WDS 

operation problem is a holistic control loop, most of the research is concentrated on parts of the 

problem and less on the problem as a whole. An exception is the work of Coulbeck and Orr 

(1989) which considered the overall aspects of the control problem consisting of a demand 

predictor, an optimized pump scheduler, and a simulator. The architecture and activities of the 

control system were presented, these include a control computer, SCADA system, activity 

scheduler, data manager, and a performance monitor. In the POWADIMA research project 

(Potable Water Distribution Management) Jamieson et al. (2007), Rao and Salomons (2007) 

and Shamir and Salomons (2008) presented a similar platform coupling a short-term demand 

forecasting module with Genetic Algorithm (GA) optimization and Artificial Neural Networks 

(ANN) for hydraulic simulation. As opposed to the above research, most of the published 

studies have concentrated on limited aspects of the control problem as described below. 

The main objective of a WDS is to supply water to the customers. As such, before any 

operational planning could be made, an estimation of the future water demands must be taken. 

Demand forecasting is the basis of all WDS operation problems. Yet, the different parameters 

of the forecasting algorithms differ according to the problem at hand (Donkor et al. 2014). For 

strategic decision making, such as system capacity expansion, a long-term forecasting horizon 

would be used (e.g., over 10 years with annual periodicity). For tactical planning, a shorter 

forecasting horizon would be used for revenue forecast or staging system improvement (e.g., 

1-10 years with monthly periodicity). However, for operations purposes, a shorter forecasting 

horizon would be used which ranges from 24-168 hours up to one year with hourly, daily, or 

weekly periodicity. In the operation problem, considering the real-time nature of the problem, 

usually, the low end of the demand forecasting horizon is considered. That is a horizon of up to 

48 hours with hourly periodicity. Zhou et al. (2002) developed a daily and 24 hours ahead 

demand forecasting module for the city of Melbourne (Australia) by dividing the demand into 

a base and seasonal consumption, thus characterizing it on a daily and monthly basis. Taking 

into account seasonal demand variations requires long history datasets, as such Zhou et al. 

(2002) used a dataset of six years. Similarly, Alvisi et al. (2007) constructed a daily and hourly 

water demand forecast for the real-time near-optimal operation of a WDS. The daily demand is 

modeled by a Fourier series which accounts for seasonal cycles. The hourly demand model is 
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fed from the daily model and composed of periodic and persistence components. Herrera et al. 

(2010) compared several hourly demand prediction models for a city in south-eastern Spain. 

These models used historic hourly and daily demands and explanatory climate variables (e.g., 

temperature, wind speed, and rain). The compared models include ANNs, projection pursuit 

regression (PPR), multivariate adaptive regression splines (MARS), support vector regression 

(SVR), and random forests. The common requirement for these models is an offline training 

stage using long history datasets. In a more recent study, Pacchin et al. (2017) suggested a 

simpler hourly demand forecast model which consists of two steps. First, the total demand for 

forecasting horizon is estimated and then the hourly pattern over this time window is predicted. 

The total demand estimation is based on the previous day with an adjustment coefficient, while 

the hourly pattern is based on the weighted patterns of the same type of days in the previous 

weeks. This kind of models is appealing for a real-time WDS operation problem since it requires 

only limited amount of historic data, and it is easy and fast to implement. 

WDSs operations are a classical example of a cost versus reliability tradeoff. On the one hand, 

and with reliability in mind, the operators prefer to keep high water levels in the tanks to cope 

with possible emergencies, such as fire, pipe bursts, energy shortages, etc. On the other hand, 

and with efficiency in mind, water utilities seek to minimize operation costs and thus seek tanks' 

water level trajectories in accordance with the energy tariff during the day. In an attempt to 

balance these two conflicting objectives, minimum and maximum water levels are usually 

defined to guarantee the required reliability while allowing the operator to vary the tank water 

levels between this defined minimum and the maximum water levels to minimize operating 

costs. Operating inside these predefined bounds can utilize different control schemes. One of 

the properties of these control schemes is the controller’s physical location. In this respect, it is 

possible to consider the following two extreme configurations: 1) A Local configuration in 

which the controller is installed locally (at the pumping station) or 2) A Central configuration 

in which the controller is installed remotely (at the main control center). 

For a pumping station and a tank configuration, the simplest automatic local controller uses 

time set points to initiate the pump and pressure setpoint to stop it (Sanks and Tchobanoglous 

1998). In this rarely used practice, a predefined time setting is used for starting the pump (which 

could be set to the start of the low electricity tariff period). This causes the water level in the 

tank to rise to the point where a water level valve is reached, and the closure of the tank inlet is 

invoked. The closure of the tank inlet causes the pump’s suction pressure to increase up to a 

limit which invokes the pump’s shutdown. The main benefit of this control scheme is that a 

telemetry system is not needed between the pumping station and the tank, which keeps the 
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control loop simple. On the other hand, time-based controls do not allow for any reaction when 

there are changes in the demand. The implementation of such a scheme may thus require 

frequent manual intervention (Sanks and Tchobanoglous 1998). Nowadays, telemetry and 

SCADA systems have become simple to configure and have relatively low installation and 

maintenance costs. This has decreased the popularity of earlier control setups and allows for 

new water level controls schemes which utilize telemetry. In these schemes, the tank’s water 

level is constantly transmitted to a controller located in the pumping station which compiles 

these readings into pump ON/OFF decisions following a predefined control logic. The simplest 

level-based control uses a fixed ON level and a fixed OFF level for the pump (Paschke et al. 

2001). However, these fixed levels do not allow for possible energy cost savings when variable 

electricity tariffs are implemented. To cope with the inefficiency of fixed level triggers, Blinco 

et al. (2016), Creaco et al. (2016), and Marchi et al. (2016) have suggested fixed ON-OFF 

triggers which vary according to the different tariff periods. This scheme would thus maintain 

low water levels during the peak period and high water levels during the off-peak period. This 

improvement of energy cost efficiency may come at the expense of adjacent pump switches, 

which is an undesired operation property. Unlike Blinco et al. (2016), Alvisi and Franchini 

(2017) have suggested variable level triggers which are considered as a linear or nonlinear 

function during each tariff period.  

The above-mentioned controller configuration is relevant when the controller is installed locally 

(at the pumping station). Although such a control scheme has advantages, its main drawback is 

its lack of "system view" which could be achieved by the central control configuration. When 

the controller is installed at the main control center, it can utilize more sophisticated algorithms 

and computational resources to control large networks. An extensive review of pump 

scheduling algorithms that are suitable for central control schemes is available in Ormsbee and 

Lansey (1994) and Mala-Jetmarova et al. (2017). 

 

Research problem 

Several aspects of the real-time control scheme make the task challenging and, in many cases, 

impractical for real-world applications: 

• Data availability and requirements – many demand forecasting algorithms require long 

history datasets to obtain reliable predictions (Alvisi et al. 2007). Even if the data is 

available, the use of long-term historical data series is a limitation when there are changes 

in the distribution system and demands baselines over time. 
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• Optimization difficulty – due to the non-linearity, non-convexity, and the on\off 

operational states of pumps, the pump's scheduling problem is, in some cases, formulated 

as a mix-integer non-linear program (MINLP). That is an NP-hard problem that cannot be 

solved for global optimality, especially for large networks over a long-time horizon. 

• Computational efficiency – by nature, real-time applications need to run fast to react to 

rapidly changing conditions which are expected in WDSs.  

This research addresses the above three challenges by a range of methods that are specially 

designed with practicality and usability in mind. 

Methods  

In this research, the emphasis is on the overall performance of the control process and rather 

than on each of its components as usually done in the literature. That is, simpler and practical 

methodologies that together yield good ("near-optimal") results are preferred over complicated 

components that might add small benefits for a large "price". The above challenges will be 

addressed with several main pillars: 

1. Adoption of simple demand forecasting algorithms – an emphasis is made on-demand 

forecasting algorithms that do not involve long history datasets, are simple to calculate, and 

may adjust to near past demand changes. 

2. Development of local and central control schemes - compared to the local control scheme 

which has a limited amount of information about the system as well as a limited 

computational capacity, the central control scheme may have the advantage of “looking” at 

the system as a whole and accounting for information from different WDS components. 

Nevertheless, the central control scheme will usually rely on controllers which use 

optimization methods to solve the pump scheduling problem, which requires intensive 

computational efforts to run the optimization algorithms in real-time. Although the energy 

costs could be minimized by these sophisticated pump scheduling algorithms, the 

complexity of these control schemes compared to a local control scheme makes them less 

popular in practice (Mala-Jetmarova et al. 2017). The local control scheme is popularly 

owed to its simplicity and its robustness because it does not rely on communication 

protocols and because most of the needed information to perform the operation task is 

available in situ. Moreover, the local scheme’s control logic is developed offline and the 

results are sent to the local PLC for implementation at the pumping station (Abdelmeguid 

and Ulanicki 2012). The control settings may also be used for a long period, or at least until 
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some major change in the system takes place (pump changes, major demand changes, etc.). 

To that end, an optimal control process for the two control schemes will be developed: 

2.1. Local control – first a simple local optimal control process is developed which can be 

utilized on a remote PLC with no real-time control from a central location. This is a 

control process for a small hydraulic zone (e.g., one or two pumping stations and a 

tank) which is very representative for many small water utilities around the world and 

in Israel. The main characteristics of such a control scheme are its limited data 

requirements and its mathematical simplicity which does not necessitate a dedicated 

optimization software. 

2.2. Central control – at a central location (e.g., a control room) more powerful 

computational resources and more information from the WDS are available. This 

enables more sophisticated algorithms to run including dedicated optimization 

software, commercial or open-source, on a larger network. However, the NLP, MILP, 

and LP control schemes formulations described above all have drawbacks. Here, 

different MILP approximations (with varying accuracy) are explored and present that 

when tested in a real-time optimization framework the balance between approximation 

accuracy and solution efficiency is biased. That is, a simple low-accuracy 

approximation may yield to efficient and practical solution algorithm which results in 

a near-optimal solution when tested in real-time operating conditions. 

3. Most of the research on WDS operations concentrated on the optimality problem for a 

specific time frame (e.g., 24 hours) and not on the closed control loop with the feedback 

from the system in a moving time window. As described earlier, only the first time step (or 

steps) of the operation plan are implemented and the optimization procedure is repeated 

thus the "investment" and the "efforts" put in the optimality search are not fully utilized. To 

that end, as opposed to many former studies, the focus in the new developments is on the 

overall process optimality and practicality. 

 

Structure 

The above-described challenges are addressed in three published journal papers: 

1. "Practical Real-Time Optimization for Energy Efficient Water Distribution Systems 

Operation": this paper address the local control problem by introducing an innovative 

flow allocation algorithm to control pumping stations in an operational zone. The 
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proposed algorithm can be implemented on a standard PLC and requires limited input 

data and computation power. 

2. "A Practical Optimization Scheme for Real-Time Operation of Water Distribution 

Systems": in this paper, a practical MILP formulation is proposed to solve the central 

control problem. First, a new demand forecasting algorithm is presented which only 

requires a short history of demand data. Then, the traditional MILP formulation is 

reduced to include only a limited number of Integer decision variables, thus making the 

optimization problem solvable in a short computational time, making it practical for 

real-time applications. 

3. "Optimization methodology for estimating pump curves using SCADA data": both the 

local and central control algorithms presented in the first two papers require operational 

parameters for the system's pumps. In the third paper, a new and practical procedure is 

presented to estimate pump curves from SCADA data even in cases where limited 

measurements are available. 

While working with the SCADA data and considering automated meter reading (AMR) 

information, the question of end-user privacy arose. As smart water meters gaining popularity, 

the fine‐grained information collected by smart meters raises growing concerns of privacy 

invasion due to personal behavior exposure (private activity, daily routine, etc.). In a fourth 

paper presented herein, "Hedging for Privacy in Smart Water Meters", the privacy concerns, 

related to smart meters are presented, and a hardware apparatus coupled with a software 

solution is suggested to hedge against the privacy risks. Noteworthy that this paper was selected 

as Editor's Highlight in the journal.  

Additionally, during my Ph.D. study, I have co-authored a paper that focuses on software 

development for increasing the usability of the tools developed in the WDSs research 

community. In the paper presented in Appendix I, we developed a plug-in architecture for the 

popular EPANET hydraulic simulator and demonstrated the use of such architecture on 

different use-cases. I am a major contributor to this work, starting from conceptualizing the idea 

and solely developing the necessary code for the experiment. 
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a b s t r a c t

The production, treatment and delivery systems of drinking water and wastewater is one of the largest
energy consumers in the US with about 4% of the nation’s power consumption. Roughly 80% of the water
treatment and distribution costs are associated with electricity, mainly for pumping. Increasing the ef-
ficiency of drinking water pumping systems could benefit both the energy- and water-sectors. Despite
the advancement of optimal pump scheduling technology, most water utilities are relatively small, and
thus lack the funds, hardware and technical personal to support the use of sophisticated and computer
intensive pump optimization programs. This study presents a simple and practical model predictive
control methodology for real-time pump scheduling. This methodology can be deployed on a standard
hardware (e.g., PLCs in pumping stations), which is currently in use by most water utilities. As such, it
provides optimal pump scheduling benefits without necessitating large investment in new computa-
tional hardware (e.g., advanced controllers). The proposed methodology reduces both the energy con-
sumption (by selecting the most efficient pumps’ combinations) and the operation cost (by optimizing
the pumps’ operation according to electricity tariff periods). The results show that our practical meth-
odology, which could be implemented in simple controllers, can provide near optimal decisions com-
parable with sophisticated optimization methods that require advanced hardware. To the best of our
knowledge, there is no available methodology with such capabilities which is specifically designed for
local control schemes. Thus, the novelty of this study is the utilization of this optimization methodology
on a simple PLC hardware. Our results are of high importance for both academic and practical reasons, as
it shows that the proposed methodology could be a kernel for a low-cost pumps’ optimization
technology.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The operation of Water Distribution Systems (WDSs) is energy
intensive. In 2010, the energy consumed by treating and pumping
of water and wastewater in the United States (US) is estimated as
4% of the total energy consumption (Copeland and Carter, 2017;
Sanders and Webber, 2012). The US is not a special case, energy
consumption of water systems is significant in other regions on the

globe. Lam et al. (2017) surveyed the energy use for water provision
in 30 cities over 15 years. They report energy intensity, in most
cities, of up to 1 kWh per m3 of supplied water. This intensity is
lumped to an annual energy use of 100 kWh per-capita. There are
many factors that influence the energy use of water systems such as
climate, topography, water use pattern, and operation efficiency
(Lam et al., 2017). The latter is the focus of the current study.
Optimal pumps’ operation in WDSs has both economic and envi-
ronmental benefits (Bunn and Reynolds, 2009). The economic
benefits are achieved mainly by shifting the pumping times from
periods of higher electricity cost to cheaper ones. Whilst the
environmental benefits are achieved by choosing the most efficient
pumps combination, which reduces the energy consumption. Thus,
reducing the greenhouse gas (GHG) footprint of the water utility
(Blinco et al., 2016; Torregrossa and Capitanescu, 2019). We note
that shifting pumping times from periods of peak energy costs to
non-peak hours require water storage facilities (water tanks),

Abbreviations: FAA Flow Allocation Algorithm, GHG Greenhouse Gas; HPZ Hy-
draulic Pressure Zone, LP Linear Programming; MAE Mean Absolute Error, MILP
Mixed-Integer Linear Programming; MPC Model Predictive Control, NDF Naïve
Demand Forecasting; PLC Programmable Logic Controller, SCADA Supervisory
Control and Data Acquisition; SST Sorted States Table, TMC Theoretical Minimum
Cost; US United States, WDS Water Distribution Systems.
* Corresponding author.
E-mail address: selad@optiwater.com (E. Salomons).
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which have capital cost and water quality implications. Several
studies (Edwards and Maher, 2008; Farmani et al., 2006; Slavik
et al., 2020) discuss the tradeoff between positive and negative
implications of water storage in WDSs.

Optimal pumps’ scheduling seeks the optimal pumps operation
in space (which pumps combination?) and time (when to turn-On/
Off the pumps?) that minimizes the energy cost subject to hy-
draulic and water supply reliability constraints. Because of hy-
draulic requirements, WDSs are usually comprised of one or more
Hydraulic Pressure Zones (HPZs). An HPZ is a defined area of a WDS
which receives water from a given hydraulic grade line. Thus, it is
supplied by at least one pressure control device such as a water
tank, pumping station or a pressure reducing\sustaining valve. The
boundaries of an HPZ can include a closed pipe or valve (i.e.,
confined HPZ), single or multiple inlets and outlets. HPZs are
widely used in practice due to their benefits in avoiding high
pressure in the WDS, reducing leakage by pressure control, and the
ability to isolate specific zones in the WDS during emergencies and
more. Large networks may be divided to many HPZs, for example,
the Barcelona (Spain) network is comprised of over 60 HPZs
(Ocampo-Martinez et al., 2013) and the network of Haifa (Israel)
have over 100 small HPZs due to its sloped topography. Nonethe-
less, many water utilities manage small networks. For example, 95%
of the 52,000 community water systems in the US are small-scale
systems serving 3300 persons or fewer (Copeland and Carter,
2017). For most of these small systems, it is impractical to be
divided into many HPZs and thus usually consist of limited number
of HPZs. Mei-Carmel (2020) states that the vast majority of WDSs in
Israel consist of two or three HPZs. In terms of operation, the di-
vision of the network into zones helps to focus the control actions
on limited number of devices and thus simplifying the optimal
operation task. Generally, an HPZ can be operated without a storage
tank by supplying water via a pressure reducing valve or a variable
speed pumping station (Nowak et al., 2018). However, having a tank
within the zone provides a more reliable water supply as well as the
ability to reduce the energy cost of the pumped water by shifting
pumping times between different electricity tariff periods. As such,
including tanks within HPZs is a desirable property for better WDSs
operation. Herein, we consider HPZs that include storage tanks.
Under this setting, there is a need for a control system to optimally
operate the pumps and the trajectories in the tanks. For these
purposes, Supervisory Control and Data Acquisition (SCADA) sys-
tems became popular in the past decades as their installation and
maintenance costs decreased. Installing a SCADA system, allows for
centralized control scheme that utilizes sophisticated and resource
intensive operating methodologies (Predescu et al., 2020). These
systems are often installed in a central location, such as a control
room, that oversees the entire water network operation (Cembrano
et al., 2000). A recent application of the centralized management
system is the Digital Twin WDS presented by Conejos Fuertes et al.
(2020). This Digital Twin resides in the control room and commu-
nicates with the SCADA system while aiming at providing a holistic
overview of the system for improved operational decisions. Mala-
Jetmarova et al. (2017) and previously Ormsbee and Lansey
(1994), presented a detailed literature review of central operation
control schemes. The centralized control schemes can be used to
derive operational decisions that account for both water quantity
and water quality aspects. For example, Abdallah and Kapelan
(2019) suggested a pump scheduling method, based on an Evolu-
tionary Algorithm, for optimum energy cost while accounting for
water quality consideration in the WDS. Khatavkar and Mays (2018)
used Genetic Algorithms for real-time control of WDSs while
considering both water quality and limited electrical power avail-
ability. These centralized control schemes benefit from powerful
computation resources which are installed in the control room, as

such this allows for using classical optimization methodologies
such as Linear Programming (LP) (Jowitt and Germanopoulos,
1992), Non-Linear Programming (Candelieri et al., 2018; Yu et al.,
1994), Mixed-Integer Linear Programming (MILP) (Salomons and
Housh, 2020), Mixed-Integer Non-Linear Programming, Dynamic
Programing (Carpentiert and Cohen, 1993) and Evolutionary Algo-
rithms (Cimorelli et al., 2020; Luna et al., 2019; Odan et al., 2015;
Torregrossa and Capitanescu, 2019; Vieira et al., 2018). Typically,
centralized control schemes that rely on classical optimization
methods use dedicated software and hardware installed in the
control room, thus requiring high level of technical personnel to
operate and maintain them.

A simpler control, which is more widely used in practice, is the
local control scheme in which the control logic is decentralized and
embedded in local controllers installed in the pumping stations or
water tanks. A comprehensive review of real-time local control
schemes is presented in Creaco et al. (2019). Usually, local con-
trollers are based on simple control rule. For example, in many
practical applications, fixed speed pumping stations relay on tank
trigger levels. These triggers invoke pump turn-on command when
the tank level is low and pump turn-off command when the level is
high. Optimized trigger levels can be computed off-line and then
embedded in the local Programmable Logic Controller (PLC) for
implementation (Alvisi and Franchini, 2017; Housh and Salomons,
2019; Paschke et al., 2001). The pumping station’s PLC communi-
cates with the PLC located at the water tank to receive its water
level and determine the pump state based on the embedded logic.

PLCs are industrial rugged computers, usually with tailored
operating systems, which have limitations on the programs and
control logic they can run. Thus, in practice, water utilities tend to
have simple control logic in PLCs. Although modern and advanced
PLCs may run almost any program, many water utilities are not
upgrading their control systems due to high costs and broader ef-
fects such changes have on the organization (Water-and-Sewer,
2014; Water-Technology, 2013). In many cases, local control by
PLCs, which is currently in use in many water utilities, is not suit-
able to run real-time pump scheduling programs that rely on the
aforementioned classical optimization methods. Thus, the potential

Fig. 1. Control loop for Water Distribution System (WDS) operation.
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of achieving efficient energy and cost savings are not fully utilized
when local control scheme is adapted.

In control theory, the real-time control of WDSs can be
addressed using a Model Predictive Control (MPC) framework. MPC
is a framework for controlling dynamic processes under a set of
constraints that utilizes three modules: (a) a simulation model to
simulate the control of the dynamics of the system over a finite
future time horizon; (b) a prediction model for predicting the un-
known future conditions; and (c) an optimization procedure, that
decides on the optimal decisions to optimize a pre-defined objec-
tive using the predicted conditions and the simulated dynamics. In
MPC, the process (i.e., using the three modules a-c) is repeated for
each time-step, where the state of the system is updated with a
receding horizon strategy. The MPC framework is widely used in
many applications, including centralized control of WDSs
(Ocampo-Martinez et al., 2012; Wang et al., 2017) as well as traffic
control (Jamshidnejad et al., 2016), energy management (Wytock
et al., 2017) and many more applications. Fig. 1 shows the real-
time MPC loop of a WDS operation. When started, and at every
time-step, a water demand forecast is made for the next operation
horizon and the electricity tariff for the same period is obtained.
The current system conditions are read from the control system and
are used as initial conditions for the next time-step. Finally, user
defined operational constraints such as time-based minimum and
maximum tanks levels, minimum and maximum pressures at the
demand nodes, physical constraints on power limitations and wa-
ter quality considerations (Darweesh, 2020; Khatavkar and Mays,
2019) are formulated. Next, an optimization procedure is carried
out to generate the system’s operation decisions for the next
operation horizon (e.g., the next 24, 48 h) that yield minimum cost
subject to the formulated constraints. Once the future operation
decisions are obtained, the first time-step (i.e., the next hour) de-
cision is implemented. At this stage, the procedure waits for the
next time-step to repeat the same control loop again with a
receding horizon strategy.

Within this control loop, the most computationally intensive
tasks are the demand forecasting and the minimization of the en-
ergy cost. Demand forecasting is a basic element in all WDS design
and operation problems, where different forecasting horizons are
used according to the problem at hand. Typically, demand fore-
casting for operational purposes (unlike strategic and tactical
planning) uses a short-term forecast of a few days with hourly
periodicity (Donkor et al., 2014). Many methods have been pro-
posed for short-term demand forecasts. Some methods use long
data series (years) for seasonal demand variations (Alvisi et al.,
2007; Zhou et al., 2002). Other methods use explanatory climate
variables such as temperature and rain (Herrera et al., 2010).
Herrera et al. (2010) considered demand forecasting using data
driven models such as Projection Pursuit Regression, Support
Vector Regression and Artificial Neural Networks which require
both long demand datasets and computationally intensive tuning
and learning stage. Thus, the aforementioned forecasting methods
require large datasets and computational resources. While these
requirements may be suitable for centralized control scheme
(where dedicated software and hardware are available), using such
demand forecasting methods in local control PLC may be imprac-
tical or impossible. To cope with this, Pacchin et al. (2017) suggested
a simpler short-term demand forecast method in which the total
daily demand is first estimated based on the previous day, and then,
the hourly pattern is derived from a weighted average hourly pat-
terns in previous weeks. In a recent study, Salomons and Housh
(2020), further simplified this forecasting method and introduced
the Naïve Demand Forecasting (NDF) method, which uses the
arithmetic average of hourly demands in previous weeks as a
prediction for future hourly demands. The NDF method requires

only a few weeks of historic demand data and uses simple math-
ematical expressions (e.g., summation and divisions) for deriving
the prediction. These characteristics make the NDF demand fore-
casting method practical for implementation on PLCs. Owed to its
simplicity and suitability to local control schemes, this method is
adopted in this paper and will be further explained in Section 2.1.

The second challenge of optimizing the energy cost is even more
computationally demanding. As detailed above, the central control
scheme uses computation intensive solvers for optimization.
Among these tools one can find commercial solvers such as CPLEX
(IBM Corp, 2009), open-source tools such as CBC (Forrest and
Lougee-Heimer, 2005), and tailored simulation-optimization soft-
ware which uses hydraulic solvers (e.g., EPANET (Rossman, 2000)).
Without heavy modifications, none of these tools can run on a
typical PLC and thus are unsuitable for local control scheme. While
these tools may appear essential for handling the nonlinear nature
(e.g., nonlinear hydraulics) of the problem, in many situation the
nonlinearity could be relaxed. Jowitt and Germanopoulos (1992)
suggested that the explicit hydraulics (which is the source of
nonlinearity) of the system may be relaxed and thus the optimal
pump scheduling problem could be formulated as an LP problem.
This relaxation assumes that any pump scheduling plan which
satisfies the minimum and maximum water level constraints at the
tanks will also satisfies the required nodal pressure constraints in
the network. This assumption is valid when a well-designed WDS is
considered. That is, when the water demand can be delivered in an
appropriate pressure from the tanks even when pumps are not
operating (Ormsbee and Lansey, 1994). Moreover, this assumption
implies that flow and power consumption of the pumps are rela-
tively not affected by other elements in the network. For example,
this is satisfied when the magnitude of the static head is large
compared to the dynamic head (Housh and Salomons, 2019), i.e.
when a pump operates against relatively constant head that dic-
tates the pump’s operation point on the characteristic curve. This is
a typical situation in HPZs, in which the pump stations work against
relatively constant pressure in the zone. Salomons and Housh
(2020) utilized the relaxation above to solve the real-time
centralized control of WDSs by formulating the optimization
problem as MILP problem. Nonetheless, the suggested approach is
designed for centralized control scheme, since it requires off-the-
shelf MILP optimization packages, which, as discussed previously,
are incompatible with local PLCs.

This study presents a simple and practical MPC methodology
which is specifically designed for local control schemes. This
method could be deployed on local PLCs, which are currently in use
by most water utilities. As such, it provides optimal pumps
scheduling benefits without necessitating large investment in new
computational hardware (e.g., advanced controllers or centralized
control scheme). The core of the proposed framework is an efficient
optimization procedure, the Flow Allocation Algorithm (FAA),
which could be easily implemented in local PLCs, since it only re-
quires a few basic operators that are available in standard PLCs,
such as loops and if conditions.

With simplicity and practicality in mind, we designed an effi-
cient local control framework, which achieves near optimal de-
cisions comparable with sophisticated optimization methods that
are exclusive to centralized control schemes. The proposed meth-
odology reduces both the energy consumption (and as a result the
GHG footprint of the water utility) and the utility’s operation cost.
The former is achieved by selecting the most efficient pumps’
combinations, while the latter is achieved by optimizing the
pumps’ operation in accordance with electricity tariff periods.

The reminder of this paper is organized as follows: Section 2
details the proposed methodology. In Section 3 we present the
test case and in Section 4 the results of the test case are discussed.
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Finally, in Section 5 we conclude the study results and propose
future research directions.

2. Methodology

We consider an HPZ (Fig. 2) for which we need to develop an
MPC framework, compatible with local control scheme deploy-
ment. The HPZ includes pump stations with multiple fixed speed

pumps and storage tanks. The task is to select the best combina-
tions of the pumps and the best time-steps for operating them
subject to water supply constraints and the system dynamics. For
this MPC framework, Section 2.1 presents a practical demand
forecasting methodology while Section 2.2 presents an efficient
optimization procedure which is tailored for the system dynamics
of HPZs in water distribution systems.

2.1. Demand forecast

Following the goal of utilizing simple and practical algorithms,
we adopt the NDF method presented by Salomons and Housh
(2020). For the completeness of this paper we briefly describe the
NDF method. For the prediction of an hourly demand value, the
NDF method averages the demand in the same hour in previous
weeks. Denoting the current absolute time in hours passed from a
predetermined time reference (e.g., the beginning of the year), h,
the demand forecast for the next hour is given by Eq. (1).

~dh¼
1
w

Xw

i¼1

dh�168,i (1)

where w is the number of previous weeks considered, d is the

historic demand, 168 is the number of hours in a week and ~d is the
forecasted demand. For implementing the MPC, there is a need to
predict the demands for a future operation horizon T (e.g., opti-
mization horizon of 48 h). That is, for each time instant t in the set

th≡
�
h; hþDt; ::: hþ T

Dt�1
�

where Dt is the time-step (e.g., 1 h). Eq.

(1) could be used for all elements in the set th to create an extended

Fig. 2. Simple illustration of Hydraulic Pressure Zone (HPZ).

Table 1
Sorted States Table (SST) of the pumping states in the illustrative network.

State Q

ðm3 =hrÞ
E
ðkWhÞ

1 40 4
2 75 11.25
3 100 22

Fig. 3. Demonstration of the FAA steps, water trajectories: (a) first iteration, (b) second iteration, (c) third iteration and (d) fourth iteration. Dotted line: water trajectories before
adding pumping in the current iteration. Solid line: water trajectories after adding pumping in the current iteration. Dashed lines: minimum and maximum tank’s volume.

E. Salomons and M. Housh Journal of Cleaner Production 275 (2020) 124148



demand forecast as shown in Eq. (2).

~dt ¼
1
w

Xw

i¼1

dt�168,i ct2th (2)

2.2. Flow allocation algorithm

There are two main roles for any optimization procedure, opti-
mizing the objective and satisfying the constraints. The FAA builds
on a very basic property of the problem, which indicates that a
decision of “do nothing” (i.e., no pumping at all) is the lowest
possible cost, which obviously infeasible for the system dynamics.
Then, the FAA iteratively looks for infeasibility in the system and
tries to resolve it by incrementally allocating additional flow. Ac-
counting for the system dynamics, the added flow must be allo-
cated at time-steps before the infeasibility occurs in order to reduce
it. While accounting for the minimum cost objective, indicates that
we must add the flow with minimum additional cost.

To illustrate the FAA, we first consider a simple WDS in Fig. 2,
which consists of one pumping station and one tank. There are
three pumping states in the pumping station as detailed in Table 1.
A pumping state represents a combination of pumps within the
station. For example, the three pumping states in Table 1 represent
three combinations of two pumps. The first pump working alone in
the first state, the second pump working alone in the second state,
and the two pumps working together in the third state. In addition
to these three states, there is a fourth state representing the case
when the two pumps are off. Each pumping state in the table is
characterized by its flow (Q ) and its hourly energy consumption (E).
The states table is sorted according to flow and hence we denote it
as Sorted States Table (SST). For simplicity, we consider a tank with
a minimum and maximum volumes of VMIN ¼ 0 m3 and VMAX ¼
100 m3, respectively and initial tank volume of V0 ¼ 40m3. For
demonstration purposes, we limit the operation horizon, T, to 3 h in
which the electricity tariff, ET , is 1 $=kWh for the first and third
hours and 2 $=kWh for the second hour. The water demand, d, is
constant for the 3 h at the rate of 60 m3=hr. The task is to select
which pumping state, s, to operate at each time-step to minimize
energy costs while maintaining the tank volume within the mini-
mum and maximum constraints.

To solve this optimization problem using the FAA, we initialize
the algorithm in the first iteration by assuming that the pumps are
off during all time-steps, thus, starting with the initial volume of 40
m3 and with a demand of 60 m3=hr, the tank volume is expected to
reach a value of �20 m3 at t ¼ 1 which is infeasible (point 1 in
Fig. 3a). As such, in the next iteration some flow must be allocated
in the first time-step (in which the infeasibility is encountered).
Considering the available pumping states from Table 1, we allocate
the first pumping state which is the most efficient one with the
smallest energy consumption. With a flow rate of 40 m3=hr for this
pumping state, the tank volume is expected to reach a value of 20
m3 at t ¼ 1 (point 2 in Fig. 3a) which is within the feasible range of
the tank’s volume. However, the tank’s volume at t ¼ 2 is expect to
be�40m3 (point 3 in Fig. 3b) which is again not within the feasible
range and thus additional flow must be allocated before t ¼ 2. Now,
we have two options: (1) increase the flow at t ¼ 1 to the second
state, i.e. from 40 to 75m3=hr or (2) increase the flow at t ¼ 2 to the
first state, i.e. from 0 to 40m3=hr. In the first option, the additional
cost is ð11:25kWh�4kWhÞ � 1$=kWh ¼ $7:25 (i.e., replacing the
first state with the second) while the additional cost in the second
option is 4kWh=m3� 2$=kWh ¼ $8. Note that despite the lower
energy consumption of the first state, 4 kWh, compared to the
additional energy consumption of the second state 11:25kWh�
4kWh ¼ 7:25kWh, moving to the second state at t ¼ 1 is favorable
due to the higher energy price at t ¼ 2 ( 2 $=kWh vs. 1 $=kWh). To
this end, for the second iteration the algorithm allocates the second
pumping state at t ¼ 1 with a flow rate of 70m3=hr bringing the
tank volume at t ¼ 1 to 55 m3 (point 4 in Fig. 3b). The process is
repeated for the third iteration, in which the tank’s volume will
be �5 m3 at time t ¼ 2 (point 5 in Fig. 3c) which is outside the
feasible range of the tank volume. As such, additional flow must be
allocated in the first or second time-steps. Again, we have two
options: (1) allocate the third pumping state in the first time-step
or (2) allocate the first pumping state in the second time-step.
Comparing the additional cost of the third pumping state in the
first time-step, ð22kWh � 11:25kWhÞ� 1$=kWh ¼ $10:75, to the
first pumping state in the second time-step, 4kWh=m3� 2$=kWh ¼
$8, reveals that the second option is preferable. Utilizing this se-
lection, with a flow rate of 40 m3=hr, will bring the tank volume at
t ¼ 2 to 35m3 which is within the feasible range (point 6 in Fig. 3c).
In the fourth iteration, considering again the demand, the tank’s
volume in t ¼ 3 is expected to be�25m3 (point 7 in Fig. 3d) which
is not feasible and requires additional flow to be allocated. In this

Fig. 4. Flowchart of the proposed methodology.
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Table 2
The flow allocation algorithm (FAA).

Fig. 5. Case study network layout.
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case we have three options: (1) the third pumping state in the first
time-step; (2) the second pumping state in the second time-step or
(3) the first pumping state in the third time-step. These options
have additional costs of $10:75, $14:5 and $4 respectively, making
the third option the preferable one. Utilizing this option, with a
flow rate of 40m3=hr, will bring the tank volume at t ¼ 3 to 15 m3

which is within the feasible range (point 8 in Fig. 3d). After the
fourth iteration we end up with a feasible solution for all the time-
steps and the optimization procedure is terminated.

Next, we present a detailed explanation of the methodology
which consists of three main stages as outlined in Fig. 4. The first
stage is an offline data preparation process in which the pumps’
characteristics are analyzed. The pumps data may be obtained from
SCADA system records, field measurements, pump tests or the
original pump’s manufacturer data sheets. The required data is a list
of operational states with their flow and hourly energy consump-
tion. If there are n pumps in the pumping station, the number of
pumpingstates (i.e., pumps combinations),nstates, is 2n including the
“do-nothing” state in which no pumps are working. In practice, not
all theoretical states are feasible due to different constraints such as
pressure restrictions in the system and/or limitation on the power
connection to the pumping station. Thefinal list of the states should
include only the feasible states. Next, the list of feasible states is
clustered into groups of states with similar flow values. This is done
since the FAA is designed to add flow in each iteration to reduce the
infeasibility of the system by selecting the best state from a higher
flow group. For example, if there are two similar pumps in a
pumping station, there are three distinct groups of states: (1) one
state with no pump is working (2) two states in which only one
pump is working, and (3) one statewith the two pumps areworking.
In the illustrative example, presented inTable 1, which also includes
two pumps, four groups could be identified because the two pumps
are not similar and each oneof them, whenworkingalone, could be a
separate group. Noteworthy that the groups’ id ranges from 0 to NG
from the lowest flow group to the highest flow group.

To summarize, the off-line first stage, produces the states table
which is sorted first by flow group (G) and then by the energy (E) to
form theSST. This table also holds the states index (S) and the states

flow (Q).
The second stage is the main control loop which continuously

runs in the PLC. The loop is repeated for every time-step (e.g., every
hour) for any given time h with the following input: the electricity
tariff (ET), the minimum and maximum tank’s volumetric con-

straints (VMIN and VMAX respectively), the demand forecast (~d) for

Fig. 6. Hourly demand profile during four weeks in the case study.

Table 3
Sorted States Table (SST) of the pumping states in the case study.

State Group G Flow Q

ðm3 =hrÞ
Energy E
ðkWhÞ

0 0 0 0
1 1 215 75.25
2 220 75.90
3 215 77.83
4 250 110.00
5 250 115.00
6 2 420 151.20
7 430 151.79
8 430 153.94
9 465 186.00
10 470 187.06
11 465 188.33
12 460 188.60
13 470 190.82
14 460 190.90
15 410 221.40
16 3 625 228.13
17 680 261.80
18 675 263.25
19 680 264.52
20 675 264.60
21 670 265.99
22 675 266.63
23 620 293.26
24 620 294.50
25 630 297.36
26 4 875 338.63
27 870 341.04
28 835 371.58
29 835 372.41
30 830 390.10
31 5 1030 448.05
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the next operation horizon (T), and the initial conditions of the
system (e.g., the current tank level). Usually the pumping station’s
PLC can communicate directly with the tank’s PLC without the need
for a centralized system. With the availability of tanks’ water level
records and flow records in the pump station PLC, it can construct
demand records through simple water mass balance. These de-
mand records are used for demand prediction within the PLC using
the NDF method. Next, the control loop invokes the optimization
stage (i.e., FAA). The output of the optimization stage is the pumps
schedule for the next operation horizon, that is, the list of pumping
states to be operated at the next T time-steps. Once the list is ob-
tained, only the decision of the current time-step is implemented
and then the control loop waits for the next time-step and the
process is repeated in a receding horizon manner. The FAA which is
used as the optimization procedure in the third stage is the main
novelty of the proposed framework, the details of the FAA are
presented in Table 2.

The algorithm is invoked with the input parameters detailed in
line L1 of Table 2. The output is the selected operation states for
each time-step, st (L2). The decision variables are initialized with
the do-nothing state (L3) and the tank’s volume is simulated for all
times (L4). Then, an initial feasibility test is conducted (L5) and the
time of the violation (tviol) of the minimum volume is returned. The
main loop of the FAA is initiated (L6) and will continue until no tank
volume violation is observed. The FAA allocates flow with the
minimum added cost so we initialize (L7) a local variable to hold
the current minimum additional cost (DCmin). In order to reduce
the infeasibility at time tviol it is evident that the additional flow
must be allocated at a time not exceeding tviol . To this end, we

search to add flow between tviol and the first time-step (L8). The
reasoning for searching from tviol backwards in time is that we
prefer delaying our pumping decisions, such that we will have the
option for recourse actions when time progresses. At each time twe
loop through the SST, starting with states above the existing state of
time t (L9), while limiting our search to states in a higher group
(L10). During the search, we calculate (L11) the additional cost
incurred (DC) which is the difference between the energy con-
sumption of the examined state (stmp) and the existing state,
multiplied by the electricity tariff (ETt). If this additional cost is less
than the current minimum additional cost (DCmin) (L12), we
simulate the tank’s expected volume with the proposed state (L13)
and check for infeasibility in the tank’s upper limit (L14). If this
proposed state (stmp) causes infeasibility in the upper limit, we
move on to check the next state (L21). However, if there are no
violation of the upper volume constraint, we update DCmin with the
new additional cost (L15) and record the selected state and time
(L16). Now we break the states’ loop (L16) and move to examine the
possibility to add flow in earlier time-steps (L22). Once we cover all
the optional time-steps we update the new selected state and time
(L23) which completes one iteration of the FAA. Next, we simulate
the tank’s volume trajectories (L24) and check for infeasibility
(L25). If there is an infeasibility, tviol is updated and the loop con-
tinues (L6). If no infeasibility is found, the algorithm returns the set
of the selected operational states (L27). An important observation is
that the FAA described above, can be computed easily with the use
of common operators “For\While” loops, “If” statements and basic
mathematical operations. Hence, as described previously, it is
compatible with local control scheme and it could be implemented

Fig. 7. Pumping states energy consumption vs. flow in the case study.

E. Salomons and M. Housh Journal of Cleaner Production 275 (2020) 124148



on a standard PLC.

3. Case study

To demonstrate the suggested methodology we consider an HPZ
(Fig. 5), which is supplied by two pumping stations, one with two
pumps and the second with three pumps. The zone is served by one
elevated tank with an operational minimum and maximum volume
constraints of 1500 m3 and 6000 m3 respectively. The data of this
case study are based on real-life measurements of pump flows,
consumed power (i.e., pump states) and demand time series. Fig. 6
shows four weeks of demand data. Each series in Fig. 6 is an hourly
demand profile for one week. The origin of this case study’s data is
an Israeli city with a mixed Muslim and Jewish population; thus,
Friday and Saturday are holydays. For the weekdays (i.e., Sunday to
Thursday), a typical two demand peaks can be observed. The
weekend days have a different pattern in which the demand

decreases in Friday afternoon.
In our case study, the operation of any pump in one pumping

station would not significantly affect the operation of the pumps in
the other, thus, pumping states in each station can work at the same
time. This is because the two pumping stations work (almost)
directly against an elevated tank. In this situation, the two pumping
stations work against the topographic difference independently.
Noteworthy that, in this real example, the change in the tank level
is negligible compared to the high topographic difference. These
conditions are also satisfied in other networks. Jowitt and
Germanopoulos (1992) provide a thorough explanation on the
validity of this assumption. They argue that in some practical net-
works, despite that the flow pattern in the network may change
significantly as a result of pump switching, the magnitude of the
nodal heads will not change significantly, and thus, the pumping
stations will operate near the same operating point.

The states from the two stations could be combined to construct
the SST . With five pumps feeding the HPZ, there are a total of
nstates ¼ 32 pumping states, including the “do-nothing” state, as
shown in the SST (Table 3). The pumping states in Table 3 are
grouped by flow similarity which coincide with the number of
pumps included in each state (e.g., in states 1e5 of group 1, only 1
pump is operated). The coefficient of variation (i.e., standard de-
viation divided by the average) of the flow in each group ranges
between 0% (group 5) to 8% (group 1) as can be seen in Fig. 7.

Fig. 7 shows the hourly energy consumption of the pumping
states as a function of their flow. The energy consumption raises
with the flow between the pumping groups while the flow and

Table 4
Electricity tariff structure.

Day Off-peak hours Mid-peak hours Peak hours

Sun e Thu 00e05
22e23

20e21 06e19

Fri 00e05
20e23

06e19 e

Sat 00e16
20e23

17e20 e

Electricity price ($= kWh) 0.0842 0.1066 0.1339

Fig. 8. Tank’s volume (a) and pumps flows (b) results for one week.
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energy vary within each group. The most efficient pumping state in
each group is the one with the smallest energy consumption. This
set of pumping states comprises the efficient states curve as
marked in Fig. 7. These states correspond to the first state for each
group in Table 3 (i.e., states 1, 6, 16, 26 and 31).

The electricity tariff is outlined in Table 4. The tariff has three
cost levels: off-peak, mid-peak and peak which vary during the
hours of the day and the days of the week. Sundays through
Thursday have the same tariff structure while Fridays and Satur-
days have a different structure each. These tariffs are based on the
Israeli electricity tariff structure.

As the electricity tariff structure has a weekly cycle and the
demand profile of this HPZ also vary in a weekly manner, the
operation horizon is set to one week, T ¼ 168 hours, with a time-
step of 1 h. The time step of 1 h is usually selected for practical
reasons mainly to reduce frequent pump switches, which can cause
mechanical damage, water hammer and water quality issues (Alvisi
and Franchini, 2017; Housh and Salomons, 2019; Lansey and
Awumah, 1994; Wood, 2005).

4. Results

The abovementioned test case was run hour by hour in a
receding horizon mode for a full month with a total of 720 runs
according the methodology outlined in Fig. 4. The process started
with a tank volume of V0 ¼ 3750m3 which is the middle of the
operational volume of the tank. The results of one-week, out of the

full month, are shown in Fig. 8. The tank volume for the week
(Fig. 8a) fluctuates between the minimum and maximum allowed
volumes, where, in general, the tank fills during the off-peak
electricity tariff periods and empties during the peak periods.
Fig. 8a also shows the hourly water demand for the week which
exhibits decreasing demands during the weekend (Friday and
Saturday). Fig. 8b shows the pumps flow over time. The results
show that most of the pumping is done during the off-peak periods,
where the high flows are always postponed to the end of the off-
peak period. This property of delaying high flow, is due to the
backward in time flow allocation strategy (L8 in Table 2) which we
discussed earlier. During the weekend (the last 48 h) the tank does
not totally fill since there are enough off-peak and mid-peak hours
to allow more modest pumping rates (which are more energy
efficient) over longer time as can be noticed in Fig. 8b. Additionally,
the pumps operation is smooth and the changes in the flow rate is
gradual. This is a desirable property in pumps operation, since
frequent on/off operation of pumps may affect the WDS function-
ality as discussed in many studies (Lansey and Awumah, 1994). All
the results in this paper were built using MATLAB version R2018b,
the YALMIIP toolbox (Lofberg, 2004) on a 64-bit Lenovo X1
ThinkPad with an Intel i7-7600U CPU @ 2.8 GHz and 16 GB of RAM.

It should be noted that the tank volume is not enough to supply
the water during the entire peak period. Thus, some pumping must
be made during the peak hours (e.g., hours 12e20 in Fig. 7b), but
this is mostly done with the small flow rate of pumping state 1, i.e.
215m3=hr (Table 3). Another nice property of the FAA algorithm, is

Fig. 9. Selected pumping states during one month operation of the test case.
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that all the selected pumping states during one month of operation
belong to the efficient states set, as can be seen in Fig. 9. This in-
dicates an efficient use of energy for pumping purposes, which also
contributes to reducing the GHG footprint of the water utility, in
addition to reducing the operation cost.

The results above are based on the frameworkpresented in Fig. 4,
which requires weekly demand forecasts for each of the 720 runs. To
evaluate the accuracy of the NDF demand forecast, which is adapted
in this study, we compare the forecasts with the real demand values
by calculating the Mean Absolute Error (MAE) in Eq. (3).

MAE¼ 1
jthj

X

t2th

��dobs; t � ~dt
�� (3)

where dobs; t is the observed demand at time t and jthj is the
number of time-steps in the forecasting horizon, T. The MAE for all
720 forecasts is shown in Fig. 10a with a minimum (best) and
maximum (worst) values of 25:3 m3=hr and 43:1 m3=hr respec-
tively. The observed and forecasted weekly demand pattern for the

best and the worst forecasts are shown in Fig. 10b and c, respec-
tively. These results demonstrate the good performance of the NDF
method despite its simplicity.

The total cost for the entire month of the Receding Horizon
strategy with Forecasted Demands (RH-FD), as obtained by the FAA,
is $29,911. To evaluate the optimality of this solution, we compare it
with other optimization methods (Table 5). First, using the receding
horizon strategy and the NDF forecasted demands, we formulate
the optimization problem as a MILP problem and solve it using the
CBC solver (Forrest and Lougee-Heimer, 2005) and obtain a total
cost of $29,248 which is only 2.3% less than the FAA. The daily costs
obtained by the FAA and the MILP solver are shown in Fig. 11a.

Next, we use the FAA and the MILP formulation and solve the full
month with the true demands, here we solve the entire month as
one problem without a receding horizon strategy. This is done to
estimate the Theoretical Minimum Cost (TMC) of the WDS opera-
tion, when unrealistically assuming that the demand can be
perfectly predicted for the entire month. Thus, this filters out the
effect of the NDF method and focuses the comparison on the

Fig. 10. NDF method performance: (a) MAE for all forecasts; and (b and c) observed and forecast demands for the minimum and maximum MAE, respectively.

Table 5
Comparison of optimization methods.

Run Optimization procedure Strategy Demand Total cost ($)

FAA(RH-FD) FAA Receding horizon Forecasted 29,911
MILP(RH-FD) MILP (CBC) Receding horizon Forecasted 29,248
TMCFAA FAA Full month True 29,753
TMCMILP MILP (CPLEX) Full month True 29,032
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optimality of the obtained schedule. When solving the TMC with
the FAA we obtain a solution of $29,753 while solving the TMC with
the MILP solver we obtain a solution of $29,032 which is only 2.5%
cheaper than the FAA solution. Solving the large-scale MILP of one
month required the use of the advanced commercial CPLEX solver
(IBM Corp, 2009). Noteworthy that the deference between FAA(RH-
FD) and TMCFAA is only 0.5% indicating the good performance of the
NDF despite its simplicity. The daily costs of the TMC as obtained by
the FAA and CPLEX solver are shown in Fig. 11b. These results
highlight the optimality of the FAA, as it can reach near optimal
solutions in all days.

Thenear optimal solution of the FAAhighlights its applicability to
the real-time MPC framework in local control scheme. This is
because, firstly, it solves the optimization problem three orders of
magnitude faster than the MILP formulation. The cumulative prob-
ability distributions of the run time for the FAA and the MILP solvers
are shown in Fig. 12 (note the horizontal log axis). As the optimiza-
tion procedure is intended for real-time control scheme, a practical
time limit for each optimization run is set at 5 min (Salomons and
Housh, 2020). Despite that the time step is 1 h, a new operating
plan for the next timestepmust be obtained much faster (e.g. 5 min).
Allowing theoptimization to run for 1h, and only then deploying the
plan, is not advisable since after1 h the system statemaybe changed
significantly. In such case the obtained results are not relevant
anymore. The results show that the FAA solves the optimization
problem in less than one tenth of a second in all cases! Whilst the
MILP solver exceeds this threshold in 13% of the cases (in 4% of the
cases the run time is above 1000 s which is the defined maximum

run time for the CBC MILP solver). Secondly, and this is the most
important advantage of the FAA, the execution of the algorithm can
be performed in a simple PLC with simple operators such as loops
and conditional statements, as opposed to heavy software de-
pendencies and heavy computational demand of the MILP solver.

5. Conclusions

Pump scheduling methods which utilize computation intensive
optimization algorithms may be suitable for implementation as a
centralized solution in dedicated control rooms where advanced
software and hardware are available. However, these methods
cannot be installed in local PLCs of pumping stations or water tanks
sites. Typically, the control logic which runs on the local PLC should
be simple and with less computational requirements. As such, in
many water utilities which use local control schemes, the potential
benefits of optimal pumps’ scheduling are unexploited. This study
presents a practical optimization methodology for real-time con-
trol which is compatible with local control schemes. Hence, it le-
verages optimization methods in simple PLCs without the need for
large investments in centralized control infrastructure.

The core of the proposed framework is the practical optimiza-
tion procedure depicted in the FAA. The algorithm iteratively allo-
cates additional flow to the water network to reduce infeasibilities
while balancing the optimality of the solution over the operation
horizon. The pumping states are allocated according to the SST
which ensures efficient pumps’ states selection. The most reliable
data for the pumps’ combinations characteristics, which is used to

Fig. 11. Daily operation costs for FAA and MILP solvers.
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build the SST, can be obtained by analyzing SCADA data. This pro-
cess is done offline and depends on both the specific pumps and the
network characteristics. Our results indicate that the suggested
framework not only reduces the operation costs, but also saves
energy by utilizing the most efficient pumps. Thus, it can help the
utility in reducing its GHG footprint. The proposed optimization
procedure is compared to MILP solvers (which are typically used in
centralized control schemes). The results show that it can provide
near-optimal solutions, comparable with the obtained from MILP
solvers, in a fraction of the time required by the solvers. In fact, the
MILP implementation does not always run within a practical time
limit suitable for real-time implementation, while the FAA runs in
less than one tenth of a second.

The suggested framework is simple, practical, and applicable to
local control schemes. This is achieved by its modest software
computational requirements of loops, simple conditional state-
ments, and basic mathematical operators. The proposed algorithm
is designed for fixed speed pumps; however, variable speed pumps
are also common. This is especially true in HPZs without storage in
which the variable demand is supplied directly by the pumps and
the pump’s speed is dynamically adjusted to meet the demand. One
way to incorporate variable speed pumps in the proposed method
is to discretize the range of possible speeds into a set of states.
Future work should examine the applicability of the proposed
method for variable speed pumps. Other directions for future
research may include better simulation of the water system with a
hydraulic simulator acting as the real system, the inclusion of user

defined constraints such as mid-day tank volume targets and more
complex electricity tariffs (e.g., power spot markets).
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A Practical Optimization Scheme for Real-Time Operation
of Water Distribution Systems

Elad Salomons1 and Mashor Housh, M.ASCE2

Abstract: Pump scheduling is a key element in water distribution systems operation. Modeling this problem requires a mixed integer
nonlinear program (MINLP) formulation. Even linearization schemes of mixed integer linear programs (MILPs) are typically beyond
the capability of real-time optimization frameworks. In this study, we explore different levels of MILP approximations by reducing the
number of binary decision variables (i.e., different binarization levels). In addition, we present a simple demand forecast model and evaluate
the performance and approximation accuracy of the suggested approach in a real-time optimization framework under a receding horizon
operation mode. The results show that the balance between approximation accuracy and solution efficiency is biased. That is, a simple low-
accuracy approximation may yield an efficient and practical solution algorithm that results in a near-optimal solution. DOI: 10.1061/(ASCE)
WR.1943-5452.0001188. © 2020 American Society of Civil Engineers.

Author keywords: Pump scheduling; Demand forecast; Water network operation; Real time; Model predictive control.

Introduction

Because of environmental regulations and increasing energy costs,
energy conservation and efficiency are gaining importance in many
water utilities. There are different activities to help utilities achieve
this goal, such as energy management, correct element sizing in the
system, upgrading and replacing with more efficient equipment,
self-generating energy, and optimizing the operation. For the latter,
smart water distribution systems (WDSs) can play a key role in
achieving optimal operation for energy saving and environmentally
friendly strategies. In 2010, the Unites States’ water-related energy
use was 12.6% of the total energy consumption (Sanders and
Webber 2012), of which one-third (4% of the total energy con-
sumption) is estimated to be consumed by pumping and treating
water and wastewater (Goldstein and Smith 2002). Nevertheless,
in many cases, WDS operation is still done according to expert
opinion and rules of thumb that use local control schemes or
ad-hoc control rules, especially in small-scale systems. There are
about 52,000 community water systems in the US. Nearly 85% of
the US population is supplied by about 5% of these systems,
whereas the remaining 95% are small-scale systems serving
3,300 persons or fewer (Copeland and Carter 2017). About 80% of
the energy consumed by these utilities is used by motors for pump-
ing. Similar asymmetry is also observed in Israel, with about 55
large water corporations and over 1,000 small water suppliers.
The distributed nature of national WDSs with many small-scale
systems, which typically lack smart systems and computational in-
frastructure, require practical and simple solutions that they can

afford. As such, these small-scale systems tend to use local control
schemes or ad-hoc control rules for handling the system operation.

During the last decades, many academic studies have been
conducted, and new methods have been developed for optimal
real-time control of WDSs. Real-time WDS control has different
implementations. Creaco et al. (2019) presented a comprehensive
review of real-time control objectives, mainly local, that include
ensuring minimum service pressure, controlling variable speed
pumps in the presence of a pressure deficit, water level control
in tanks, and flow control for maximizing energy production.
Ormsbee and Lansey (1994) and lately Mala-Jetmarova et al.
(2017) presented a literature review of systemwide central opera-
tion that includes pump operation in the context of real-time con-
trol. In general, the overall control loop of the real-time operation of
WDS is shown Fig. 1. First, the current state of the system is read,
usually from a supervisory control and data acquisition (SCADA)
system; a water demand forecast is performed for the next operation
period; and the electricity tariffs are obtained. Then, an optimiza-
tion problem is formulated and solved in order to obtain the opera-
tional settings (e.g., pumps and valve settings) that minimize the
operational costs for the next operation period (e.g., 24 h). These
settings must fulfill the system’s constraints, both physical con-
straints (e.g., power connection size) and operator requirements
(e.g., minimum tank levels for reliability of the supply). Finally,
the obtained operational settings are implemented for the current
time step and the process is repeated for the next time step. At
the beginning of each time step, the initial condition of the system
is set (mainly the real tank levels), thus nullifying any potential
discrepancy between the design results and the real situation of
the system before solving the next time step problem.

In control theory, the previously mentioned model (Fig. 1) is
known as a model predictive control (MPC) model. MPC is a
method for controlling dynamic processes under a set of constraints.
The MPC uses a model of the dynamic system to simulate its behav-
ior and optimize control settings while satisfying the constraints.
This is done for a future finite time horizon in which some param-
eters are unknown; thus, it is predictive. At each time step, the pro-
cess is repeated and the system state is updated within a receding
horizon strategy. MPC is used in different fields, such as economics
(Ellis et al. 2017) and traffic control (Jamshidnejad et al. 2016),
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as well as for water resources systems (Galuppini et al. 2019; Grosso
et al. 2014; Ocampo-Martinez et al. 2012). Even though the real-
time WDS operation problem is a holistic control loop, as shown
in Fig. 1, most of the research has concentrated on parts of the prob-
lem and less on the problem as a whole (i.e., it has focused on certain
blocks such as demand forecasting and energy cost optimization).
An exception is the work of Coulbeck and Orr (1989), which
considered the overall aspects of the control problem consisting
of a demand predictor, optimized pump scheduler, and simulator.
The architecture of the control system included a control computer
machine, SCADA system, activity scheduler, data manager, and
performance monitor. In the potable water distribution management
research project (POWADIMA), Jamieson et al. (2007), Rao and
Salomons (2007), and Shamir and Salomons (2008) presented a
similar platform coupling a short-term demand forecasting module
with genetic algorithm (GA) optimization and artificial neural net-
works (ANNs) for hydraulic simulation. As opposed to the previous
studies, most of the published work has concentrated on limited as-
pects of the control problem. For example, most of the research on
optimal WDS operation has concentrated on the optimality problem
for a specific time frame (e.g., 24 h) and not on the closed control
loop with feedback from the system in a receding horizon mode. As
described earlier, only the first time step (or steps) of the operation
plan is implemented and the optimization procedure is repeated;
thus, the investment and efforts put into the optimality search are
not fully utilized. To that end, as opposed to many former studies,
the focus of this paper is on the overall process optimality and
practicality.

Several aspects of the real-time control scheme make the task
challenging and, in many cases, impractical for real-world applica-
tions: (1) data availability and requirements—many demand fore-
casting algorithms require long history data sets in order to obtain
reliable predictions (Alvisi et al. 2007). Even if the data are avail-
able, the use of long-term history data series is a limitation when
there are changes in the WDS and demand baseline over time;
(2) optimization difficulty—due to the on-and-off operational states
of pumps, the pump scheduling problem is, in some cases, formu-
lated as a mixed-integer linear program (MILP). That is, it is a
nondeterministic polynomial time (NP)-hard problem that is diffi-
cult to solve for global optimality for large networks over a long-
time horizon; and (3) computational efficiency—by nature, real-
time applications need to run quickly in order to react to the rapidly
changing conditions that are expected in WDSs.

Considering these challenges, in this study, the emphasis is on
the overall performance of the control process rather than on each
of its components, as usually done in the literature. That is, we
would prefer simpler practical methodologies that together yield
good (near-optimal) results over complicated components that

might add small benefits for a large price. The previous challenges
will be addressed with two main pillars: (1) adoption of simple
demand forecasting algorithms—an emphasis will be made on de-
mand forecasting algorithms that do not involve long history data
sets, are simple to calculate, and may adjust to near past demand
changes, and (2) reducing the size of the optimization problem by
using wise binary coding of the discrete decision variables. This
approach should result in an optimization problem with a relatively
small number of binary variables that can be solved in reasonable
time with state-of-the-art commercial solvers such as CPLEX (IBM
2009) or free and open-source solvers such as CBC (Lougee-
Heimer 2003). This study develops a practical method for optimal
operation of WDSs and explores the tradeoff between the operation
efficiency and optimality within a receding horizon operation mode
as opposed to concentrating on the optimal solution for a given
operation horizon, as usually done in the literature. The rest of the
paper is structured as follows: first, a demand forecasting algorithm
is presented. Next, we introduce the reduced MILP formulation,
which is used to derive the control variables in an efficient manner,
and then a realistic case study is presented while comparing the
different MILP approximations. The last section summarizes the
main conclusions of the study.

Demand Forecast

The main objective of a WDS is to supply water to customers.
However, before any operation planning can be done, an estimation
of the future water demands must be given. Demand forecasting is
the basic element in all WDS design and operation problems, where
different forecasting settings are used according to the problem at
hand (Donkor et al. 2014). For strategic decision-making, such as
system capacity expansion, a long-term forecasting horizon should
be used (e.g., over 10 years with annual periodicity). For tactical
planning, such as revenue forecast or staging system improvement,
a shorter forecasting horizon should be used (e.g., 1–10 years with
monthly periodicity). However, for operations purposes, a short-
term forecasting horizon should be used, which typically ranges
from 24–48 h up to 1 year with hourly, daily, or weekly periodicity.

In the real-time operation problem, which is the focus of this
study, we consider the low end of the demand forecasting horizon,
that is, 24–48 h with hourly periodicity. Zhou et al. (2002) devel-
oped daily total and 24-h-ahead demand forecasting models for the
city of Melbourne (Australia) by dividing the demand into base and
seasonal consumption, thus characterizing it on a daily and monthly
basis. However, taking into account seasonal demand variations re-
quires long history data sets; for example, Zhou et al. (2002) used a
historical data set of 6 years. Similarly, Alvisi et al. (2007) con-
structed a daily total and hourly water demand forecast for real-time
near-optimal operation of a WDS. The daily demand is modeled by
a Fourier series, which accounts for seasonal cycles. The hourly
demand model is fed from the daily model and composed of peri-
odic and persistence components. Herrera et al. (2010) compared
various hourly demand prediction models for a city in southeastern
Spain. The data set included historic hourly and daily demands and
explanatory climate variables (e.g., temperature, wind speed, and
rain). The compared prediction models include artificial neural
networks, projection pursuit regression (PPR), multivariate adap-
tive regression splines (MARS), support vector regression (SVR),
and random forests. The common requirement for these models is
an offline tuning stage using long history data sets. The previous
demand forecast models all require a long demand data history,
which is not available in some cases, and mostly do not account
for recent changes in demand patterns. In a more recent study,
Pacchin et al. (2017) suggested a simpler hourly demand forecast

Fig. 1. Real-time control loop of WDS operations.
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model that consists of two steps. First, the total demand for a pre-
defined forecasting horizon is estimated, and then the hourly
pattern over this time window is predicted. The total demand
estimation is based on the previous day with an adjustment coef-
ficient, whereas the hourly pattern is based on the weighted patterns
of the same type of days in the previous weeks. This kind of models
is appealing as a practical prediction model for real-time WDS op-
eration because it requires only a limited amount of historic data
and has ease of implementation and low computation complexity.
In addition, from a practical point of view, such a simple forecast-
ing model is easier to implement and maintain compared to differ-
ent machine learning algorithms such as ANNs. Inspired by the
work of Pacchin et al. (2017), for the purpose of this research,
we propose the naïve demand forecasting (NDF) model, which also
requires limited historic demand data (e.g., 4 weeks) and is fast and
simple to calculate. The NDF model is solely based on the average
demand in the same hour in previous weeks. Let h be the current
absolute time denoted in hours passed from a given base reference
(e.g., hours from the beginning of the year, decade, or any other
given time). Given h, the demand prediction for the next hour is
given by Eq. (1)

~dh ¼ 1

w

Xw

i¼1

dh−168·i ð1Þ

where w = number of historic weeks considered; d = historic
demand; ~d = forecast demand; and 168 = number of hours in a
week. To demonstrate the NDF prediction model, a real-world
historic demand time series is given in Fig. 2(a). It includes 4 full
historic weeks, 4 days of the current week, and 9 h of the current
day. The end of this time series is the current time, denoted as h.
Fig. 2(b) presents the same 4 historic weeks of hourly demand data
over a weekly cycle; that is, each series presents 1 historic full
week. The daily pattern can easily be observed with a morning
and afternoon peak. A distinctive different demand pattern can
easily be observed for Friday and Saturday. These different patterns
can be explained by the different holidays of the mixed Jewish and

Muslim population of the city at hand. The predicted demand using
the NDF model for time h, ~dh, is shown in Fig. 2(a). this prediction
is merely the average of the same hour demand in the previous
4 weeks, as shown in Fig. 2(b) by the vertical line on Thursday.

Similarly, the NDF model may be used to forecast the demands
for a longer time period as required by the WDS optimization
model. Considering the operation window length T (e.g., optimiza-
tion horizon of 48 h) and a time step Δt (e.g., 1 h), at each time
t ∈ τh ≡ fh; h þ Δt; : : :h þ Δt½ðT=ΔtÞ − 1�g a demand forecast
is required; thus, Eq. (1) takes a time series form as described
in Eq. (2)

~dt ¼ 1

w

Xw

i¼1

dt−168·i ∀ t ∈ τh ð2Þ

In consistency with Pacchin et al. (2017), which inspired
the development of the NDF model, we evaluate the performance
of the NDF model by using the mean absolute error (MAE%) as
given in Eq. (3)

MAE% ¼ 100%

n

X

t∈τh

����
dtobs − ~dt

d̄obs

���� ð3Þ

where dtobs = observed demand at time t; d̄obs = average of the ob-
served demands; and n = number of time steps in the forecasting
horizon, T.

Optimization Problem Formulation

The most general formulation of the WDS operation problem,
which fully represents the hydraulics of the system, is mixed-
integer nonlinear programming (MINLP) such as the considered
in Biscos et al. (2003) and Vigerske et al. (2012), where the total
pumping cost is minimized. The integer variables are associated
with the pumps and valves in the systems that have an on and
off state (open and close for valves). The nonlinearity is a result
of energy balance equations such as the Hazen–Williams equation

Fig. 2. Historic demand data.
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and the pump and valve curves. However, despite their generality,
these formulations are difficult to solve for global optimality in
large networks. In many cases, the optimization problem may
be formulated as linear programming (LP) or mixed-integer linear
programming problems by removing the explicit hydraulics formu-
lation. This optimization scheme is relevant when the pumps are
working against a point with relatively constant head [e.g., when
the static head is significantly larger than the dynamic head, as
Housh and Salomons (2019) demonstrated]. The nodal pressure re-
quirements in the network are assumed to be satisfied if the water
level in the tanks is within its operational levels (Ormsbee and
Lansey 1994), given that the network is properly designed (in terms
of pipe sizing). Jowitt and Germanopoulos (1992) also noted that
the LP and the MILP formulation may be applied when the flow
and power in the pumping stations are not affected by pump and
valve controls in the network. The real-world test case demonstrated
in this study satisfies the previous requirements. Other real-world
networks, such as C-town (Ostfeld et al. 2012), hold the same prop-
erties. However, the LP formulation, such as in Jowitt and Germa-
nopoulos (1992), may result in short pump operation time, which is
undesirable, mainly because of mechanical reasons. With the pre-
vious assumption, we first formulate a full MILP problem.

The WDS considered in this study includes sources such as
groundwater wells, fixed and variable speed pumps, tanks, and
junctions. Each junction may be an aggregation of a group of real
network junctions. At time h, the optimization problem aims at
determining how to operate the WDS for the next time step
Δt (e.g., optimization time step of 1 h). Nevertheless, to prevent
myopia in the solution process, the first decision must account
for the conditions (e.g., energy costs and demands) in a predefined
future operation horizon. As such, the optimization problem should
be solved for an operation horizon T (e.g., optimization horizon of
48 h), although only the first time step decision will be executed in
practice. Specifically, at each time t ∈ τh ≡ fh; h þ Δt; : : :h þ
Δt½ðT=ΔtÞ − 1�g of the operation horizon T, the state (i.e., on or
off) of each fixed speed pumping station (FPS) and the flow for each
variable speed pumping station (VPS) should be determined. The
sets of pumps are defined by FPS ¼ fFPS1; : : : ;FPSnFPSg and
VPS ¼ fVPS1; : : : ;VPSnVPSg, where nFPS and nVPS are the num-
ber of fixed and variable speed pumping stations in the network,
respectively.

For each fixed speed pumping station p ∈ FPS, there is a set Sp
of operation states that represent any combination of pump units,
including the off state in which no pumping units are working. Each
of these states s ∈ Sp is accompanied by its flow Qs and power Ps.
The values Qs and Ps are not decision variables but rather given
parameters that could be determined by analyzing the operation
points of different pump unit combinations in the fixed speed
pumping stations. As opposed to the fixed speed stations, in
the variable speed pumping stations p ∈ VPS, the flowQp is a con-
tinuous decision variable, and the power is a function of the sta-
tion’s total flow PpðQpÞ.

Given the above, the objective of the optimization problem is
defined in Eq. (4), in which the energy cost is minimized over
the operation horizon T

min obj ¼
X

t∈τh
ECt · Δt

�X

p∈FPS

X

s∈Sp
Ps · Its þ

X

p∈VPS

PpðQt
pÞ
�

ð4Þ

Its ∈ f0; 1g ∀ t ∈ τh; ∀ s ∈ Sp; ∀ p ∈ FPS ð5Þ

where ECt = electricity cost at time t; Its = binary decision variable
determining if a specific operation state s of a fixed speed pumping
station is operating at time t or not; and Qt

p = continuous decision

variable determining the flow rate of the variable speed pumping
station p at time t.

The previous objective function is subject to a set of physical
and operational constraints. At each time step, for each FPS, only
one operating state could be selected; see Eq. (6). That is, logically,
only one combination of pumping units could be chosen to switch
on during the time step. For example, for a pumping station with
two fixed pumping units, four states are defined: State #1 for which
no pump is on, State #2 in which only pump #1 is on, State #3 in
which only pump #2 is on, and State #4 in which both pumps are
on. The condition in Eq. (6) specifies that only one of these possible
realizations can exist at the same time

X

s∈Sp
Its ¼ 1 ∀ t ∈ τh; ∀ p ∈ FPS ð6Þ

The mass balance conservation law must be satisfied for
each junction j ∈ J of the network junctions set J. For each junc-
tion j, we define sets of ingoing and outgoing flows from fixed
speed pumps (FPSin

j , FPSout
j ), variable speed pumps (VPSin

j ,
VPSout

j ), flows to and from operational tanks (Rj), and a set of
supplied demand zones (Dj)
X

p∈FPSin
j

X

s∈Sp

Qs · Its þ
X

p∈VPSin
j

Qt
p þ

X

r∈Rj

Qt
r −

X

p∈FPSout
j

X

s∈Sp

Qs · Its

−
X

p∈VPSout
j

Qt
p ¼

X

i∈Dj

dti ∀ t ∈ τ h; ∀ j ∈ J ð7Þ

whereQt
r = decision variable for the flow from (positive) or to (neg-

ative) tank r at time t; and dti = demand in demand zone i at time t.
In addition to the spatial mass balance at each time step as given

in Eq. (7), the mass balance for the tanks must be ensured over time,
as specified in Eq. (8). Moreover, the water volume in each tank
should be kept within a predefined operational range, as detailed
in Eq. (9). Usually, the maximum volume denotes the physical
capacity of the tank, whereas the minimum volume requirement
is to account for emergency capacity such as fire prevention reg-
ulations and other reliability considerations

VtþΔt
r ¼ Vt

r −Qt
r · Δt ∀ r ∈ R; ∀ t ∈ τh ð8Þ

V̱t
r ≤ Vt

r ≤ V̄t
r ∀ r ∈ R; ∀ t ∈ τh ð9Þ

where Vt
r = water volume in tank r at time t; R = set of all tanks in

the system; and V̱t
r and V̄t

r = minimum and maximum volumes at
time t, respectively.

Typically, variable speed pumps are designed to operate in wide
ranges of flow; still, this flow is bounded by minimum and maxi-
mum flow rates specified by the installed equipment. These bounds
are defined in Eq. (10)

Q̱t
p ≤ Qt

p ≤ Q̄t
p ∀ t ∈ τh; ∀ p ∈ VPS ð10Þ

where Q̱t
p and Q̄t

p = minimum and maximum flow rates,
respectively.

In some practical cases, pumping stations have limits on the
amount of water they are allowed to pump in a specific period
of time. For example, such a scenario may arise when the daily
capacity of the water treatment plant is below the daily capacity
of the pumping station. Another practical example is when water
wells have restrictions on water volume production because of
hydrological withdrawing constraints. Eqs. (11) and (12) constrain
the total amount of water that FPS and VPS can pump in prespe-
cified time periods, respectively

© ASCE 04020016-4 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2020, 146(4): 04020016 



Q̱total
p;i ≤

X

t∈Ki

X

s∈Sp

Qs · Its · Δt ≤ Q̄total
p;i ∀ i ∈ FTStotal

h;p ; ∀ p ∈ FPS

ð11Þ

Q̱total
p;i ≤

X

t∈Ki

Qt
p · Δt ≤ Q̄total

p;i ∀ i ∈ VTStotal
h;p ; ∀ p ∈ VPS

ð12Þ

where FTStotal
h;p = time segments (TSs) defined at time h for the total

volume constraints; Ki = times in the ith TS; and Q̱total
p;i , Q̄total

p;i =
minimum and maximum volume constraints for pumping station p
in the ithTS, respectively.For example, if, for a pumping station, there
are two time segments with volume restriction, say, hours 2–6 and
hours 10–14, thenwedefine a setK2–6 that includes all hours between
2 and 6 and a set K10–14 that includes all hours between 10 and 14.

Frequent flow rate changes between consecutive time steps
are in some cases restricted to avoid mechanical and water quality
issues (Housh and Salomons 2019). Eqs. (13) and (14) constrain
the change of the flow rate that FPS and VPS can have between
consecutive time steps, respectively

ΔQ̱p;i ≤
X

s∈Sp
Qt

s½Its − It−Δt
s � ≤ ΔQ̄p;i

∀ t ∈ Ki; ∀ i ∈ TSdiff
h;p ; ∀ p ∈ FPS

ð13Þ

ΔQ̱p;i ≤Qt
p −Qt−Δt

p ≤ΔQ̄p;i ∀ t ∈Ki; ∀ i ∈ TSdiff
h;p ; ∀ p ∈VPS

ð14Þ

where TSdiff
h;p = time segments defined at time h for the change in the

flow rate constraints; and ΔQ̱p;i and ΔQ̄p;i = minimum and maxi-
mum flow rate change constraints for pumping station p in the ith
TS, respectively.

Pumping stations consume energy for their operation that is sup-
plied by power stations. Power stations can be a connection to the
electricity grid, a power generator, or any other type of energy sup-
ply. The power supplied to the pump stations is limited by power
station capacity or prespecified contracts with water utilities. Such
constraints related to power supply are imposed in Eq. (15), which
limits the simultaneous operation of a predefined set of pumping
states. Several pumping stations may be connected to one power
station, and the constraint applies to their total power consumption

X

s∈Sm
Its ≤ 1 ∀ t ∈ Ki;

∀ i ∈ TSpower
h;m ; ∀ m ∈ POS ð15Þ

where POS = set of all power stations in the network; Sm = set of
pumping states that are not allowed to operate simultaneously; and
TSpower

h;m = time segments defined at time h for power station
constraints.

The previous detailed optimization problem [Eqs. (4)–(15)] is
formulated as a MILP. The number of integer variables in the prob-
lem is determined by the number of states for each pumping station
multiplied by the number of the time steps within the optimization
horizon T. Thus, for large networks with a large number of time
steps in the optimization horizon, solving the MILP to global op-
timality is not guaranteed given the limited central processing unit
(CPU) time in real-time operation of the system (even in the mid-
size case study herein, 50% of the cases will exceed a runtime of
5 min). To cope with this challenge, we propose a reduced approxi-
mated formulation of the original MILP. We hypothesize that for
real-time receding horizon control loop implementation (where ef-
ficiency is important), such a reduced MILP model will yield to an

efficient and practical solution algorithm that results in a near-
optimal solution. As such, we emphasize the overall performance
of the control process rather than the accuracy of the optimization
problem as usually done in the literature. That is, we would prefer
simpler and practical methodologies that together yield good (near-
optimal) results over complicated components that might add small
benefits for a large price.

The reasoning behind this hypothesis is that, as described ear-
lier, only the first time step of the operation plan is implemented;
thus, the investment and efforts put into the optimality search are
not fully utilized. The real decision we are looking for is the first
time step decision; we only account for a longer operation horizon
to ensure that the optimization problem is not myopic, so that the
obtained first time step decision takes into account the future con-
ditions. As such, when adapting a receding horizon control loop
framework, any MILP approximation that yields a first time step
decision equal to the optimal one in the original MILP should
be equally good when implemented in a real-life system.

To derive the MILP approximation, we propose a reduced-size
MILP in which only part of the binary decisions Its is required to be
binary. Specifically, we require that only the binary decision var-
iables in the near future should be restricted to the set f0; 1g,
whereas the far-future variables are relaxed to continuous variables
between 0 and 1. By doing so, we still include the far future in the
operation horizon to prevent myopia of the solution, but far-future
decisions are modeled in an imperfect way (i.e., relaxed to continu-
ous) relying on the reasoning described previously. In such a frame-
work, the relaxed binary variables could be interpreted as the
fraction of time (out of the time step length) in which a pumping
station state is selected. In light of the previous, the MILP formu-
lation in the previous section should be modified by replacing
Eq. (5) with Eqs. (16) and (17). Eq. (16) denotes the binary decision
variables for the first time steps, whereas Eq. (17) sets the continu-
ous variables for the rest of the optimization horizon

Its ∈ f0; 1g ∀ t ∈ τbinary
h ; ∀ s ∈ Sp; ∀ p ∈ FPS ð16Þ

0 ≤ Its ≤ 1 ∀ t ∈ τh − τbinary
h ; ∀ s ∈ Sp; ∀ p ∈ FPS ð17Þ

where τbinary
h = set of times representing the near future in which the

decision variables are restricted to be binary. The size of the set
τ binary
h defines the binarization level in the reduced MILP, such that

binarization level 1 is when τ binary
h includes the first time step only,

whereas binarization level 2 is when τbinary
h includes the first two

time steps, and so on.

Case Study

The test case is based on a real-world network introduced in Selek
et al. (2012). The network is a regional water network of Sopron, a
city in Hungary near the Austrian border with a population of about
62,000 inhabitants (2017). The layout of the network and its con-
nectivity are shown in Fig. 3. The network consists of five wells,
three variable speed pumping stations, five constant speed pumping
stations, eight tanks, and eight junctions, of which five are demand
nodes. The aim is to minimize the operation costs of the system
while satisfying all the constraints discussed previously. The opera-
tional cost is a function of power consumption of the pumps and the
electricity tariff. The electricity tariff consists of two periods: low
tariff with a cost of 1 €=kW · h for hours 0–7, 13–17, and 20–24 and
peak tariff with a cost of 1.25 €=kW · h for hours 7–13 and 17–20.

Wells 1–3 are equipped with variable speed pumps that are lim-
ited in their maximum hourly flow. In addition, these wells have
daily minimum and maximum production volumes, as shown in
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Table 1. In a receding horizon operation mode, such as in our case,
daily constraints are handled by adjusting the parameters of the
constraint in Eq. (12) according to the pumped water up to the cur-
rent time. Specifically, in Eq. (12), VTStotal

h;p changes for every h, and

Q̱total
p;i and Q̄total

p;i are adjusted according to the pumped water during
the part of the day before the current time step. Because of opera-
tional and hydrological constraints, the flow of Wells 1–3 may be
changed only a limited number of times during the day. As such,
the operators of the network decided that these changes in the
wells’ flow will occur only when the electricity tariff changes
(i.e., hours 7, 13, 17, and 20 during each day). Using Eq. (14), this
requirement could be easily adapted in our formulation by setting
TSdiff

h;p to include all times except the tariff change times and setting

ΔQ̱p;i ¼ ΔQ̄p;i ¼ 0 during these times for the variable speed
pump associated with Wells 1–3. Well 4 has a constant flow rate
of 66 m3=h; this could be adapted by including the entire operation
horizon (e.g., 48 h) in TSdiff

h;p and setting the allowed change to zero

ΔQ̱p;i ¼ ΔQ̄p;i ¼ 0. Well 5 has no direct supply constraints and
can supply any flow Pumping Station 8 requires. As such, it could
be defined by setting TSdiff

h;p to an empty set.
There are eight pumping stations (PS) in the network (PS1–

PS8). At each time step, the pumping stations may be operated

according to one pumping state from a set of possible states that
represent a certain combination of pump unit operation. This set
also includes a state in which all pumping units are off. For each
pumping station, the possible pumping states are detailed in Table 2.
Because of power limitations, Pumping Stations 5 and 6 together,
which are connected to the same power station, may not consume
more than 35 kW during high-tariff periods. This constraint means
that State 3 of PS5 and State 4 of PS6 may not operate together
during high-tariff periods because their combined power consump-
tion is 37.5 þ 10.6 ¼ 48.1 kW, which exceeds the 35 kW limit.
This restriction could be implemented using Eq. (15), where
SPOS1 includes these two pumping states and TSpower

h;POS1 includes
the high-tariff period at every h. All other state combinations
are allowed in terms of power constraints. Table 3 summarizes
the parameters of the eight operation tanks in the system.

Methodology Implementation

The optimization horizon is set to T ¼ 48 h with a time step of
Δt ¼ 1 h. This network has a daily demand pattern; to account
for the daily pattern, many previous studies typically use a 24-h
horizon with cyclic constraints on the water volumes for the tanks,
aimed at preventing a myopic solution that does not account for an

Fig. 3. Case study network layout.

Table 1. Parameters of the wells in the case study

Well Q̄ ðm3=hÞ Q̱total ðm3=dayÞ Q̄total ðm3=dayÞ Qinitial ðm3=hÞ
1 270 3,000 6,000 253
2 250 1,000 3,000 72
3 460 5,000 11,000 179
4 66 1,584 1,584 66
5 ∞ 0 ∞ —

Note: Qinitial is the initial well flow at the beginning of the 720-h time
horizon.

Table 2. Parameters of the pumping stations in the case study

Pumping
station State Qs ðm3=hÞ Ps ðkWÞ
1 1 0 0

2 150 50
3 360 125

2 1 0 0
2 110 5.5

3 1 0 0
2 270 30
3 500 60

4 1 0 0
2 550 210

5 1 0 0
2 66 18.7
3 116 37.5

6 1 0 0
2 66 3.8
3 118 7.4
4 148 10.6

7 1 0 0
2 90 9.2
3 114 9.2

8 1 0 0
2 72 24
3 130 46

Table 3. Parameters of the tanks in the case study

Tank V̱ ðm3Þ V̄ ðm3Þ Vinit ðm3Þ
1 200 500 391
2 0 1,000 498
3 1,008 2,000 1,226
4 983.6 1,901.6 1,370
5 1,784 3,766 2,210
6 2,500 4,950 3,783
7 930 2,132 1,345
8 620.7 1,179 989
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extended operation horizon. However, there is no guarantee that a
cyclic constraint will result in the optimal solution. Furthermore, in
the case of multiple tanks, it is not clear why each tank should re-
turn to its initial volume. This becomes even more evident in the
case of a fault in the system where the day starts with nonoptimal
volumes in the tanks. In this case, it is not preferable to set these
volume levels to the target volumes at the end of the optimization
horizon. In this study, owing to the efficiency of the reduced MILP
model, we allow for a longer horizon (e.g., 48 h) instead of the
cyclic constraint as typically done in previous studies.

According to the process described in Fig. 1, at each time step,
the water volumes from the previous time step are set as the tanks’
initial volumes, and the demand prediction for the five demand no-
des is made for the next 48 h. The reduced MILP is built along with
the variable electricity tariff data and constraints as detailed previ-
ously. As described previously, this network has a daily operation
cycle and demand pattern. As such, the reduced MILP formulation
is tested with different binarization levels (i.e., different sizes of
τ binary
h ), which range from Binarization Level 1, in which τbinary

h
includes the first time step, up to Binarization Level 24, in which
τ binary
h includes the next 24 time steps. Because the optimization

solver may converge to multioptimal solutions (i.e., different solu-
tions with the same operation cost), and in order to minimize the
number of switches between pumping states from the current time
to the next time step, a discount of 1% in the electricity tariff was
given to the current working states at the first time step in every
optimization problem. For example, if one of the pumping states
is working at the starting time of the optimization, and from the
cost perspective it is indifferent whether the pump is on at the first
time step or the second one, we introduce a small cost reduction of
1% in current states of the first time step, thus giving preference
toward keeping the states unchanged. This procedure helps in
avoiding undesired frequent pump switches. A discount of 1%
is small enough not to interfere with the optimal solution; it is just
to distinguish between multioptimal solutions that result in the
same objective value. This is because the difference in power
between the different states is significantly above 1% (as shown
in Table 3), and the difference in electricity tariffs is more than
25%. Once the optimization process is ended, the first time step
of the obtained solution is implemented in the real network con-
ditions by simulating its operation using the true demands (true
demand is assumed unknown to the optimization model, which
only uses the demand forecast) to obtain the simulated tanks levels
that will be used as initial conditions for the next optimization prob-
lem. In this study, we consider a simulation of the real system with
only water demand as uncertain. As such, the process dynamics are
assumed perfectly known. However, in many applications, other
uncertainties exist in the model, such as pump and pipe character-
istics, that influence the physical behavior of the system. A more
detailed model that takes these additional uncertainties into account
could be developed (e.g., a full hydraulic model). Our future work
will be extended to cover more uncertainties.

Results

The proposed receding horizon control loop was tested for a period
of 30 days (i.e., 720 h). The optimization program was built using
MATLAB version R2018b, the YALMIIP toolbox (Lofberg 2004),
and the open-source CBC MILP solver (Forrest and Lougee-
Heimer 2005) on a 64-bit Lenovo X1 ThinkPad with an Intel
i7-7600U CPU @ 2.8 GHz and 16 GB of RAM. A series of runs
with different sizes of τbinary

h were performed, varying from Binar-
ization Level 1 (with binary variables for the first hour and continu-
ous variables for the next 47 h) up to Binarization Level 24.

The total cost for Binarization Level 1 was 199,760 Euros, with
a solution runtime of up to 1.6 s for each time step, whereas the
total cost for Binarization Level 24 was 196,970 Euros, with a sol-
ution runtime of up to 1,000 s for each time step, which is the time
limit for the optimization solver. A summary of the results is given
in Table 4, in which the total cost is calculated according to the
objective function of the optimization problem, Eq. (4).

Although we allowed the solver to run for 1,000 s (for compari-
son reasons), in practice, the solver must run in a shorter time
(e.g., 5 min). Allowing the solver to run for 1 h and only then
deploying the operational plan is not advisable because after 1 h,
the system state will be changed significantly.

To evaluate the performance of the previous solutions, we com-
pared them to the theoretical minimum cost (TMC). The TMC was
obtained by solving the full MILP problem for 30 days with the true
demands, which of course are unknown in the real case, thus mak-
ing it a theoretical best benchmark, which we only used for com-
parison purposes. To obtain the TMC solution, a large-scale MILP
problem of 16,560 binary variables was solved using the commer-
cial CPLEX solver (IBM 2009). The solution was obtained in 4.5 h
using the same hardware described previously and resulted in a
total cost of 179,620 Euros.

As shown in Table 4, the errors obtained were between 9.4%
and 11.2%, with negative correlation between binarization level
and error. An error of order 10% when compared to the best bench-
mark solution (i.e., TMC), in which we solved a deterministic op-
timization problem for the entire horizon (i.e., 1 month) with
perfect demand forecast, is not a high error. When comparing
Binarization Level 1 with Binarization Level 24, which is typically
adapted in the literature, we found that the model with Binarization
Level 1 produced an error of 1.44% compared to the model with
Binarization Level 24, whereas Binarization Level 4 produced an
error as low as 0.2% compared to the model with Binarization
Level 24.

Intuitively, one might expect that increasing the binarization
level always improves the total cost. Nevertheless, our results show
that this is not necessarily the case. The results show that, for the
case study conditions, Binarization Level 8 produces the closest
result to the best benchmark. To interpret this result, one should
remember that any MILP with binarization level less than 720
(i.e., that does not include the entire operation horizon of 1 month
with binary decisions) is in fact an approximation of the “true” op-
timization problem. At each time step, this approximation is solved
for 48 h, but only the first time step’s decision is implemented. As
such, no matter how gross the approximation, if it produces first
time step decisions (when implemented in a receding horizon
mode) closer to TMC decisions, it will produce better results.
For example, let us consider a reduced MILP with Binarization
Level 1 versus Binarization Level 24. Intuitively, one may think
that a model with Binarization Level of 24 that includes more

Table 4. Results for 1-month optimal control with different binarization
levels

Binarization
level

Total cost
(Euro)

Cost error from
TMC (%)

1 199,760 11.21
4 197,360 9.88
8 196,480 9.39
12 196,910 9.63
16 197,600 10.01
20 197,650 10.04
24 196,970 9.66
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binary decisions is a better approximation. This is because it is
closer to the true optimization problem in which all pumping de-
cisions should be binary, as opposed to the case of Binarization
level 1, in which only the first time step is binary and the rest
of the time horizon is considered with continuous decisions. Never-
theless, recalling that only the first decision will be implemented
from both approximations, the model with Binarization Level 1
might produce a first time step decision better than the one obtained
from the model with Binarization Level 24. Indeed, each optimi-
zation problem in Binarization Level 1 is a reduced MILP; thus, it
does not even produce feasible decisions after the first time step
(infeasible in the sense that binary variables are treated as continu-
ous ones), but what really matters when operating in receding hori-
zon mode is the optimality of the first time step decisions.

Acknowledging the importance of the first time step decision,
next we compared the first time step decisions from Binarization
Levels 1 and 24. Fig. 4 presents the percentage and cumulative per-
centage of the number of different states in the first time step de-
cisions between the two binarization levels. The results show that in
23.75% out of the 720 optimization problems (i.e., solved for 720 h
in a receding horizon model), both binarization levels produced the
same pumping states, whereas in 19.31% of the cases, the two bi-
narization levels only differed in one pumping state. The cumula-
tive percentage graph in Fig. 4 shows that in 92% of the cases, there
were only up to four different states between the two binarization
levels. This similarity of the first time step decisions obtained from
the very distinct binarization levels, explains how Binarization Lev-
els 1 and 24 obtained very close total costs (i.e., Binarization Level
24 was closer to the TMC by only 1.5%).

Different binarization levels could have different impacts on
different parts of the network. To illustrate these impacts, Fig. 5
presents tank volumes of four tanks in the system during the first
24 h for Binarization Levels 1 and 24 as compared to the TMC
solution. In Tank 8, the two binarization levels and the TMC sol-
ution resulted in similar volume trajectories; as such, the two
binarization levels had the same level of optimality in terms of Tank
8 operation. On the other hand, in Tank 6, the volume trajectory had
the same trend in all models, but the model with Binarization Level

24 deviated from the TMC trajectory. As such, this demonstrates
that in terms of Tank 6 trajectory, the higher binarization level is in
fact inferior. In Tank 7, the model with Binarization Level 24 pro-
duced a closer trajectory to the TMC trajectory, whereas in Tank 4
both binarization levels produced trajectories that were signifi-
cantly different from the TMC trajectory. These results in Fig. 5
emphasize that there is no general rule on how the binarization level
might impact different parts of the network and fortifies the fact that
increasing the binarization level does not necessarily improve the
optimality of the operation. The same behavior can be observed for
pumping station flow, which is a function of the pumping state con-
trol variables. Fig. 6 shows pumping station flow trajectories for
Binarization Levels 1 and 24 compared to the flows trajectories
in the TMC solution for PS3 and PS7. For PS3 [Fig. 6(a)], the
hourly flows were exactly the same for the two binarization levels,
and both had a small change at Hour 19 compared to the TMC
solution. On the contrary, for PS7 [Fig. 6(b)], there were noticeable
differences between the two binarization levels and the TMC
solution.

An important aspect of receding horizon operation mode is the
optimization runtime. As the number of binary variables increases,
the optimization solver runtime is expected to increase. However,
the state of the system changes during the 1-h time step (e.g., con-
sumers change their demands and the tanks’ levels change); as
such, it is important to reach the solution as quickly as possible.
We set a reasonable limit of 5 min CPU time. The cumulative prob-
ability of the different solution runtimes is shown in Fig. 7. The
results show that for Binarization Levels 1 and 4, over 99% of
the runs end in less than 3.4 s. As the binarization level increases,
the probability of reaching a solution within the practical time
limit of 5 min decreases: 99%, 93%, 90%, 73%, and 52% for
Binarization Levels 8, 12, 16, 20, and 24, respectively. That is, for
this test case, using binarization level of more than 8 is not a prac-
tical methodology for real-time operations.

Clearly, there is a tradeoff between the binarization level and
error from the best benchmark TMC solution. The tradeoff between
the error and solution time is shown in Fig. 8. Every point in Fig. 8
presents the solution error and the 95th runtime percentile of a
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Fig. 4. Statistics for the number of different states in the first time step decisions as obtained from binarization levels of 1 and 24.
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given binarization level. For example, for Binarization Level 1, the
error from TMC is 11.21%, whereas 95% of the 720 runs per-
formed in the receding horizon mode finished within 1.28 s. Fig. 8
also presents the best fit (y ¼ 8.628 · 10−8.274x þ 9.86) between
error and runtime, which shows a constant asymptotic relationship
above Binarization Level 4. Indeed, with a binarization level of
only 4, the obtained error compared to the best benchmark solution
is almost equal to the obtained from Binarization Level 24 (9.88%
versus 9.66%). The runtime for the model with Binarization Level
24, which is typically adapted in the literature, will exceed 595 s in

5% of the cases (Fig. 7) and will exceed the 5-min limit in 52% of
the cases (Fig. 7). The model with Binarization Level 4 produces an
error as low as 0.2% compared to the model with Binarization
Level 24 and solves 95% of the cases under 1.65 s, with 100%
of the cases within the 5-min limit (Fig. 7). This makes the model
with Binarization Level 4 a good compromise for obtaining a prac-
tical model for the WDS at hand.

To evaluate the proposed naïve demand forecasting model per-
formance, we considered 720 forecasts of 48 h each over a period
of 32 days using a sliding window of length 48 h. To avoid seasonal

0 5 10 15 20 24
1000

1500

2000

V
ol

um
e 

(m
3
)

Tank 4 BL 1 BL 24 TMC

0 5 10 15 20 24
2500

3000

3500

4000

0 5 10 15 20 24

Time (hour)

800

1000

1200

1400

1600

V
ol

um
e 

(m
3 )

Tank 7

0 5 10 15 20 24

Time (hour)

600

700

800

900

1000

Tank 8

Tank 6

Fig. 5. Tank volumes for Binarization Levels 1 and 4 compared to the TMC trajectories.

0

50

100

F
lo

w
 (

C
M

H
)

F
lo

w
 (

C
M

H
)

F
lo

w
 (

C
M

H
)

BL 1

0

50

100
BL 24

0 5 10 15 20 25

Time (hours)

0

50

100
TMC

0

200

400

600

F
lo

w
 (

C
M

H
)

F
lo

w
 (

C
M

H
)

F
lo

w
 (

C
M

H
)

BL 1

0

200

400

600
BL 24

0 5 10 15 20 25

Time (hours)

0

200

400

600
TMC

(a) (b)

Fig. 6. Pumping station flows for Binarization Levels 1 and 24 compared to the TMC flows: (a) PS3; and (b) PS7.

© ASCE 04020016-9 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2020, 146(4): 04020016 



change influences, we used a period in midwinter. The mean
MAE% over all forecasts was 14.7%, with a minimum of 4.8%
and a maximum of 26.3%. Fig. 9(a) presents the MAE% for all 720
forecasts with the minimum and maximum values highlighted.
Figs. 9(b and c) show the observed and forecast demands for the
minimum and maximum MAE%, respectively. Although these er-
ror values may seem high, we claim that, unlike previous studies,
the impact of the demand forecast accuracy should be evaluated in
view of the robustness of the applied control approach with respect
to model uncertainties (i.e., the accuracy provided by NDF is suf-
ficient for the proposed application). As such, we favor the simplic-
ity of the prediction model over its accuracy as a separate block in
the overall optimal control scheme. For our purpose, the NDF
model yields acceptable forecasts with low computational burden
and requires a small set of demand history data, making it a prac-
tical prediction model.

To examine the sensitivity of the obtained results to the accuracy
of the demand forecast, we solved the reduced model with

Binarization Level 1 using the true demand for every optimization
problem in the receding horizon optimization (i.e., perfect demand
forecasting). The total cost under this setting was 199,990 Euros,
which was, surprisingly, 0.1% worse than the results obtained with
the forecast demands. This is a counterintuitive result in which a
perfect forecaster results in lower performance than a naïve fore-
caster when implemented in a feedback control loop. Nevertheless,
this result fortifies our claim that the focus should be put on the
overall performance of the system rather than a component of
the control system (e.g., a forecaster in this case). This result could
be explained by the fact that the optimization model does not solve
the entire operation horizon of 30 days, but it solves pieces of 48 h
each. Thus, in terms of the 30-day problem optimality, it is not
guaranteed that solving the 48-h subproblems with perfect demand
prediction will result in a better performance than solving the 48-h
subproblems with imperfect demand prediction. Indeed, our results
indicate that when solving with reduced MILP, imperfect demand
prediction results in slightly better performance in terms of the
30-day cost. Of course, this is not a general conclusion, but it high-
lights the fact that emphasis on the demand prediction accuracy and
optimization problem optimality, which have been the focus of
many studies, is overrated if not tested within a complete control
loop framework that resembles the real-life implementation of such
systems.

Conclusions

Although real-time WDS operation problem is a holistic control
loop, many previous studies focused on different parts of the oper-
ation problem, such as demand forecasting accuracy and optimiza-
tion problem optimality, rather than on the holistic control loop.
Herein, we considered the entire problem in a closed control loop
scheme and showed that emphasis on the demand prediction accu-
racy and optimization problem optimality is overrated if not tested
within a complete control loop framework that resembles the
real-life implementation of such systems.

The general real-time WDS operation problem requires a formu-
lation of MINLP that is, for many real-world networks, beyond the
capability of a real-time optimization framework, making it an im-
practical formulation. Nevertheless, in many cases, explicit hy-
draulic formulation can be neglected, and MILP approximation
can be formulated. This study presented practical reduced MILP
formulation to solve the optimization problem. Relying on the fact
that in a receding horizon mode, only the first time step decisions
will be implemented, our reduced MILP is configured by the
binarization level, which is the number of first time steps that
are modeled with binary decision variables. That is, we allow
for binary decision relaxation in the far future (i.e., beyond the de-
fined binarization level). We show that such reduced MILPs with
small binarization levels can provide a practical solution strategy
that balances solution accuracy and efficacy. The results show that
different binarization levels do not significantly differ in cost. In
contrast, increasing the binarization level increases the computa-
tional burden up to a point that exceeds a practical runtime limit
imposed in real-time operation.

The obtained results are counterintuitive in two aspects. First, as
the binarization level increases, that is, when the formulation is
closer to the real MILP problem, better overall cost results are ex-
pected. However, the test case results show that this expectation is
not always realized. In some cases, lower binarization levels yield
better results than higher ones. This highlights the importance of
first time step decision optimality, which is the only decision imple-
mented when solving in receding horizon mode as expected in
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real-life settings. This also indicates that optimization problem op-
timality, which has been the focus of many studies, is overvalued if
not tested within a receding horizon mode. The results also counter-
intuitively show that when testing this control scheme with perfect
demand forecasting, using the true demands, the imperfect forecast
slightly outperforms the perfect one. This lends support to the fact
that demand forecast accuracy is not important by itself if not tested
in the context of the entire control loop.
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Abstract: Water distribution systems (WDSs) deliver water from sources to consumers. These
systems are made of hydraulic elements such as reservoirs, tanks, pipes, valves, and pumps. A pump
is characterized by curves which define the relationship of the pump’s head gain and efficiency
with its flow. For a new pump, the curves are provided by the manufacturer. However, due to its
operating history, the performance of a pump deteriorates, and its curves decline at an estimated
rate of about 1% per year. Pump curves are key elements for planning and management of WDSs
and for monitoring system efficiency, to determine when a pump should be rehabilitated or replaced.
In practice, determining pump curves is done by field tests, which are conducted every few years.
This leaves the pump’s performance unmonitored for long time periods. Moreover, these tests often
cover only a small range of the curves. This study demonstrates that in the era of IoT and big data,
the data collected by Supervisory Control And Data Acquisition (SCADA) systems can be used to
continuously monitor pumps’ performance and derive updated pump characteristic curves. We
present and demonstrate a practical methodology to estimate fixed and variable speed pump curves
in pumping stations. The proposed method can estimate individual pump curves even when the
measurements are given only for the pumping station as a whole (i.e., total flow, pumping station
head gain). The methodology is demonstrated in a real-world case study of a pumping station in
southern Israel.

Keywords: pump curves; water distribution systems modeling; pump monitoring by SCADA

1. Introduction

The flow of water requires energy. In nature, rivers flow from the mountains to the
sea due to gravitational energy. Similarly, in some water distribution systems (WDSs), the
flow of water in pipes is also governed by gravity. However, to supply water to higher
areas and to overcome the energy losses in the water delivery system, additional energy
must be added. This is the role of pumps, which convert electrical power to mechanical
power, and then into hydraulic energy (head). Energy consumption for pumping water in
distribution systems constitutes an important element of the overall energy budget. For
example, the energy consumed for treating and pumping of water and wastewater in the
United States in 2010 was estimated to be 4% of the total energy consumption [1,2]. In a
survey conducted by Lam et al. [3], it was found that the energy used for water provision
in 30 cities over 15 years, is up to 1 kWh per m3 which amounts to an average annual
per-capita energy use of 100 kWh. Pump performance and efficiency deteriorate over
time [4]. It has been estimated that the energy use of a potable water pump will increase
by about one percent per year [5]. The reasons and rates of performance degradation over
time have been analyzed by Eaton et al. [6]. They conclude that the head at constant flow
declines in a non-linear fashion, reaching 1% after two years of service, and growing to
10% after 9 years of service. They recommend that pump performance should be tracked
over time but also point to the practical difficulties of doing this under field conditions.

Water 2021, 13, 586. https://doi.org/10.3390/w13050586 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-1522-1805
https://orcid.org/0000-0001-8196-9187
https://doi.org/10.3390/w13050586
https://doi.org/10.3390/w13050586
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13050586
https://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/13/5/586?type=check_update&version=2


Water 2021, 13, 586

Thus, monitoring the performance and condition of pumps is important. The opera-
tion of a pump is described by its characteristic curves that show the pump’s head gain,
power, and efficiency over a range of flow rates. For new pumps, these curves are supplied,
together with the pump, by the pump’s manufacturer. For pumps already installed and
in operation, it is customary to perform field tests to evaluate their current performance
curves [7]. For example, Israeli regulations require that a certified pump test should be
performed once every 30 months or after 7500 h of operation (whichever comes later) [8].
According to these regulations, it is not permitted to operate a pump with an efficiency of
less than 65%, or a well pump with an efficiency of less than 55%. The pump curves are
used for monitoring its performance as well as a central component in hydraulic models
of WDSs. These models are used for design, operation, and monitoring tasks in WDSs,
including: pipes’ sizing and expansion [9,10], network calibration [11], detecting cyber-
attacks [12], optimizing pumps operation [13,14], water quality modelling [15,16], sensor
placement [17], minimizing greenhouse gas emissions [18], and analysis of water hammer
effects [19].

Obtaining the pump curve by a pump test is a simple procedure for a fixed speed
pump (FSP) as the pump can be tested at a few operational points (flows and head),
with different suction and/or discharge pressures. By utilizing flow, pressure and power
measurements, the curves can be constructed. On the other hand, variable speed pumps
(VSP) are used to maintain a desired flow or pressure. Therefore, it is not feasible to test
the pump across its range of speeds, so they are usually tested at a single speed, which is
its nominal (i.e., maximum) speed. VSPs are common because they provide a number of
advantages [20] including: (a) the pump flow can change gradually and give the upstream
process (e.g., treatment plant) time to adjust; (b) no water storage is required on the demand
side, as the pump can adjust to changing demands while maintaining the required pressure
in the demand zone; (c) the flow can be changed gradually to reduce water hammer, and
(d) motor life can be extended since fewer starts and stops are needed [21].

On the other hand, Gottliebson et al. [20] argue that VSPs also have disadvantages
compared to FSPs: (a) they are more expensive in both installation and maintenance; (b)
they may be less efficient; (c) controlling a VSP is more complex, and (d) a VSP may not
be suitable for flat H-Q system curves as high efficiency is difficult to maintain over the
entire flow range. In spite of these disadvantages, VSPs are most popular in systems in
which no water storage is available, and where there is a need to regulate the flow using a
demand-following mechanism.

With the VSPs gaining popularity in practice, they have been modelled in most
simulation software, such as EPANET [22], and their modelling and simulation continue to
be an active research topic [23–26]. Many studies of VSPs address the operation of WDSs
and optimization of pumps scheduling [27–31]. In a recent review, Wu et al. [32] report
improved system efficiency due to the use of VSPs, as well as other benefits of increased
levels of flexibility in controlling WDSs in real time. Lima at al. [33] suggested the use of
VSPs as a tool to recover energy and reduce leakage in WDSs. Wu et al. [34] incorporated
VSPs in the design stage of water networks and transmission lines. Huo et al. [35] explored
the option of using VSPs in deep injection well systems. All these studies assumed a fully
known pump curves for their VSPs. Thus, as the effort in VPSs modelling and simulation
grows, the need for accurate representation of the VPS curves increases.

Although not explicitly mentioned in most published research, the performance of
pumps, including VSPs, may be evaluated from the abundance of historical records which
is often available in WDSs that have Supervisory Control And Data Accusation (SCADA)
systems [5,36]. To produce the FSP’s curves, one needs the flow, suction and discharge
pressures (in fact only the difference is needed), and power readings for the pump. For
a VSP the speed readings (or the motor frequency) are also required. Due to budget
restrictions, many water utilities do not install all the required sensors in their pumping
stations. In some cases, flow meters are not installed for each individual pump and only a
single flow measurement is available for the entire pumping station. In other cases, the
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individual pump’s speed is not recorded. Power measurements are missing in many cases
for the individual pumps and, if at all, are available only for the entire station. Facing these
problems in real systems motivates the development of a methodology for deriving pump
curves under limited data availability.

The methodology presented in this study is designed to produce the pump’s curves
when some of the data are missing. The implementation is demonstrated on a pressure zone
in the water supply system of Mey-Sheva, which is the largest water utility in southern
Israel. The entire system contains 6 pumping stations, 11 water tanks, and serves a
population of 143,000 in Be’er-Sheva and the adjacent town Ofakim. The system has 670 km
of water pipelines, of which about 100 km are part of the pressure zone.

2. Methodology

The methodology for pump curve calculation is designed to estimate them using
SCADA data. Following the problem statement, the procedures are developed for single
and combination of FSPs, and for single and combination of VSPs.

2.1. Problem Statement

The objective is to determine the curves for individual pumps in a pumping station
that contains pumps in parallel, using SCADA data. The pumps may operate alone or
in various combinations with other pumps. Ideally, a pumping station that consists of
n pumps, p ∈ Pumps, where Pumps is the set of pumps in the station, will have real-time
measurements of each pump’s flow, power, and on/off state, as well as the suction and
discharge pressures of the station. However, due to budget limitations, individual pump
flow and power are often unavailable and only the total station’s flow is measured. In this
study, we consider that the following data are available at multiple times: each pump’s
state, Ip (a binary variable where a value of 0 denotes that the pump is off and 1 when it
is running), the total station’s flow, Qobs, and the suction and discharge pressures. The
difference between the discharge and suction pressures is the station’s head gain, Hobs. For
each variable speed pump, its speed, np, is also recorded. All these values change over
time and are available for each time step, t ∈ T, where T is a set of given historical time
steps. We aim to estimate the pumps’ curves in a quadratic form, which is a common form
used to the approximate the concave nonlinear association between head gain and pump
flow [22,37].

Hp = ap − bp ·Q2
p p ∈ Pumps (1)

where, Hp and Qp are the pump’s head gain and flow, respectively. ap (the shutoff head)
and bp are the function parameters.

2.2. Fixed Speed Pumps

We start with the simple case of a single fixed speed pump (Figure 1) operating alone.
Using Equation (1) and the SCADA data, we calculate, in Equation (3), the head errors,
eH , between the estimated pump head, Hest (i.e., the head resulted from the H-Q curve,
Equation (2)), and the observed head, Hobs. Since we are dealing with a single pump, the
index p is omitted.

Hest,t = a− b·(Qobs,t)
2 ∀t ∈ T (2)

eH,t = Hest,t − Hobs,t ∀t ∈ T (3)

To estimate the parameters of Equation (1) the sum of the squares of eH could be
minimized, namely using least square regression. However, this method is sensitive to
outliers in the SCADA data, and large deviations may bias unduly the fitting procedure.
To avoid this deficiency of a least square regression, we use the least absolute errors (LAE)
method in which the sum of absolute errors, EH , as defined in Equation (4), is minimized.

EH = ∑
t∈T
|eH,t| (4)



Water 2021, 13, 586

In the ordinary case of curve fitting, it is customary to assign the errors to vertical
distances (i.e., the head in our context) between the observations and the assumed curve.
However, in general, one can assign the errors to horizontal distances (i.e., the flow in our
context) between the observations and the curve (Figure 1). Thus, the curve fitting process
can also be defined on the flows, by minimizing EQ as defined in Equations (5)–(7).

Qest,t =

√
a− Hobs,t

b
∀t ∈ T (5)

eQ,t = Qest,t −Qobs,t ∀t ∈ T (6)

EQ = ∑
t∈T

∣∣eQ,t
∣∣ (7)

where, eQ is the flow error, Qest is the estimated flow, Qobs is the observed flow, and EQ is
the sum of absolute flow errors. Figure 1 shows the vertical and horizontal distances of a
measured point from the estimated pump curve. Generally, the estimated curve will not be
the same for H and Q error minimization. While for a single fixed speed pump there is no
clear advantage of one method over the other, and both vertical and horizontal errors can
be easily calculated, the advantages of the horizontal calculations will become evident for
more complicated cases that will be discussed next.

Figure 1. Vertical and horizontal errors between observations and assumed curve.

Pumping stations may have more than one pump operating in different combinations
at different times. Consider, for example, a station with two identical pumps, Figure 2a
shows the measured points of each pump alone and the two pumps working together.
The case in which the two pumps operate together must be included in the procedure for
deriving the curves for the individual pumps, since if only data for the pumps operating
individually are considered, the curve’s parameters may be biased because the entire
operating region of the pump is not covered. To see this, consider the system curve in
Figure 2b, when a pump operates alone it will be on the “right side” of its curve with high
flow rates, as can be seen in Point A in Figure 2b. For two pumps operating together in
parallel, the combined curve is obtained by summing the flows of the two pumps for each
value of the head. The operating point in this case is Point B which is at the intersection of
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the combined pump curve with the system curve. This operating point corresponds to a
higher head compared to Point A, and thus each pump provides less flow at a higher head
(Point C) than when it operates alone (Point A).

Figure 2. Two pumps operating in parallel (a) SCADA data (b) pumps and system curve.

This example demonstrates how individual pumps can work in different regions on
the curve depending on the active pump combination. This behavior will be even more
pronounced when there are several non-identical pumps in the pumping station with many
combinations of operations. If we only use the data of a single pump operating alone (e.g.,
data near Point A) the estimated pump curve will tend to fit points in that region without
considering the entire range of possible pump flows. To estimate the parameters of the
individual curves based on the entire set of SCADA points (i.e., all combinations) there are
two options:

Method 1
The combined curve for any specific combination can be derived as a function

of the individual pumps’ parameters. For example, given two pumps with curves,
Equations (8) and (9), the combined function must be written explicitly, as Equation (10),
and curve fitting technique with vertical error, eH , can be used to estimate the parameters
for each of the two pumps curves.

H1 = a1 − b1Q2
1 (8)

H2 = a2 − b2Q2
2 (9)

Hest = f (a1, b1, a2, b2, Qobs) (10)

While this procedure is valid in theory, deriving an explicit analytical function, even
for only two pumps and certainly for more pumps operating together, is not practical due
to the nonlinearity of the curves. To derive the function f (.), Equations (8) and (9) are
written for Q as given in Equations (11) and (12).

Q1 =

√
a1 − H1

b1
(11)

Q2 =

√
a2 − H2

b2
(12)
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It should be noted that for any number of pumps operating in parallel, their head gain
is equal, thus H1 = H2 = Hest. Summing the two flows yields the total flow of the pumps
station as given in Equation (13)

Qobs =

√
a1 − Hest

b1
+

√
a2 − Hest

b2︸ ︷︷ ︸
g(a1,b1,a2,b2,Hest)

(13)

The function f (.) is the inverse of the function g(.) defined in Equation (13). Thus,
even for the simple case of two pumps, one cannot derive an explicit form for the function
f (.). At best, the procedure is tractable for two pumps, by a numerical solution of Equation
(10) or (13) for given values of a1, b1, a2, b2. For a larger number of pumps this is not
practical, since one needs to prepare in advance the combined functions for all possible
combinations of pumps and then numerically solve all combination for each time step.
Method 2 addresses this challenge by considering the horizontal error.

Method 2
Figure 3 demonstrates the calculation of the horizontal error for two pumps operating

together. The observed flow, Qobs, of the station is the combined flow of the two pumps,
and Hobs is the measured head gain of the pumping station, which is equal for all pumps
running in parallel. To calculate the horizontal error, eQ in Equation (6), the estimated total
flow, Qest, is calculated based on the individual pumps’ curves as given in Equation (14).
That is, as shown in Figure 3, the observed head is used to estimate the flows from each
pump, Qest,1 and Qest,2, which are then summed as an estimate for the total flow of the
station. Given this total flow estimate the horizontal error, eQ, can be calculated.

Qest =

√
a1 − Hobs

b1
+

√
a2 − Hobs

b2
(14)

Figure 3. The horizontal error for two fixed speed pumps.
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The advantage of this method is that it does not require an explicit derivation of
the combined curve based on the individual curves’ parameters (i.e., it does not require
knowing the explicit function f (.)). In fact, unlike Method 1, which requires preprocessing
the curves of all combinations, using Method 2 leads to a generic optimization problem,
which can consider any arbitrary number of pumps, Equations (15)–(20).

min
ap ,bp

∑
t∈T

∣∣eQ,t
∣∣ (15)

Subject to:

Qest,p,t =

√∣∣∣∣ ap − Hobs,t

bp

∣∣∣∣ ∀p ∈ Pumps, ∀t ∈ T (16)

Qest,t = ∑
p∈Pumps

Ip,t·Qest,p,t ∀t ∈ T (17)

eQ,t = Qest,t −Qobs,t ∀t ∈ T (18)

ap ≥ 0 ∀p ∈ Pumps (19)

bp ≥ 0 ∀p ∈ Pumps (20)

Equation (15) is the objective function which minimizes the summed absolute hor-
izontal errors by deciding on the pumps’ curves parameters ap and bp. In Equation (16)
the estimated individual pumps flows, Qest,p,t, are calculated, and the total estimated flow
for the pumping station is defined in Equation (17). It should be noted that the estimated
flow is summed only for the pumps which are operating at each time by multiplying
the individual pump’s flow by its given binary state, Ip,t ∈ {0, 1}. In Equation (18) the
horizontal error is calculated, and Equations (19) and (20) maintain the non-negativity of
the parameters. While the absolute value in the objective function might be converted
to set of linear constraints, the nonlinearity in the constraint in Equation (16) cannot be
eliminated. Therefore, the obtained optimization problem is nonlinear. Readily available
solvers such as fmincon shipped within Matlab [38] and the IPOPT [39] open source solver
can handle this type of nonlinearity in the constraints. Moreover, since the number of
decision variables is not expected to be high (e.g., a pumping station with 10 pumps will
only result in 20 decision variables) and since this problem will be solved offline, one can
utilize more computationally demanding global solvers such as Baron [40] to solve the
optimization problem.

2.3. Variable Speed Pumps

A change in the rotational speed of a VSP changes its curves and operating point,
according to the affinity laws:

Qp,t

Qp,t
=

np,t

np
∀p ∈ Pumps, ∀t ∈ T (21)

Hp,t

Hp,t
=

(
np,t

np

)2
∀p ∈ Pumps, ∀t ∈ T (22)

Pp,t

Pp,t
=

(
np,t

np

)3
∀p ∈ Pumps, ∀t ∈ T (23)

where, np is the nominal speed of pump p, and np,t, Qp,t, Hp,t and Pp,t are the speed,
nominal flow, nominal head gain, and nominal power for time t respectively. We examine
first the case in which a single pump is operating. Its flow and head are that of the
pumping station, Qp,t = Qobs,t and Hp,t = Hobs,t. Since np is a known constant value
(usually equivalent to the pump’s speed at 50 Hz), Qp,t and Hp,t can be calculated from
Equations (21) and (22) for each time t according to the speed of the pump, np,t. Once these
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values are calculated for different points in time, a curve fitting method can be employed to
derive the pump’s curve (i.e., Hp = a− b ·Q2

p) in the same way as for a fixed speed single
pump (Section 2.2).

Thus, for times of a single operating pump we can easily map observed points to
the nominal pump curve. However, as discussed previously, because the time instances
of single pump operation are only a subset (sometimes only a small subset) of the entire
operation, we may end up with a limited number of points on the curve, which causes a
bias in the pump curve estimation process. This is especially true, when the points for the
single pump operation fall on a narrow range of the pump curve. To overcome this bias,
the pump’s operation with other pumps must be included.

Next, we derive the equations for fitting all the pumps’ curves simultaneously without
restriction to specific time instances in which an individual pump is operating alone. That
is, we also consider the time instances with joint operation of different pump combinations.
From Equations (21) and (22) we obtain Equations (24) and (25).

Qp,t = Qp,t

(
np

np,t

)
∀p ∈ Pumps, ∀t ∈ T (24)

Hp,t = Hp,t

(
np

np,t

)2
∀p ∈ Pumps, ∀t ∈ T (25)

For VSPs we aim at fitting the nominal pumps’ curves as shown in Equation (26):

Hp,t = ap − bp·Q
2
p,t ∀t ∈ T, p ∈ Pumps (26)

Substituting Equations (24) and (25) in Equation (26) and extracting Qp,t will yield a
relationship between the individual pump heads and flows at any speed.

Qp,t =

√√√√√
∣∣∣∣( np,t

np

)2
ap − Hp,t

∣∣∣∣
bp

∀t ∈ T, p ∈ Pumps (27)

Since the measured head is the same for all pumps, Hp,t = Hobs,t ∀p ∈ Pumps ∀t ∈ T,
by substituting Hobs,t in Equation (27) we can obtain an estimate for the flows of the
individual pumps.

Owing to the advantages of the horizontal error formulation, the optimization problem
is formulated in Equations (28)–(33). The objective function, Equation (28) is minimized
by deciding on the pump’s curve parameters ap and bp. The individual pumps’ flows
are estimated in Equation (29). To obtain the total estimated flow of the pumping station,
the individual pumps’ flows are summed in Equation (30) and the horizontal error can
be calculated in Equation (31), while maintaining the non-negativity of the parameters in
Equations (32) and (33).

min
ap ,bp

∑
t∈T

∣∣eQ,t
∣∣ (28)

Subject to:

Qest,p,t =

√√√√√
∣∣∣∣( np,t

np

)2
ap − Hobs,t

∣∣∣∣
bp

∀t ∈ T, p ∈ Pumps (29)

Qest,t = ∑
p∈Pumps

Ip,t·Qest,p,t ∀t ∈ T (30)

eQ,t = Qest,t −Qobs,t ∀t ∈ T (31)

ap ≥ 0 ∀p ∈ Pumps (32)
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bp ≥ 0 ∀p ∈ Pumps (33)

The process for calculating the horizontal error is shown in Figure 4. First, the
normalized heads for the two pumps are calculated (at points A and B) using their operating
speed by Equation (25). Then, using the normalized heads the normalized flows can be
estimated by inverting Equation (26). Next, using each pump’s speed, their estimated
individual flows (Qest,1, Qest,2) are estimated (at Points C and D) by inverting Equation (24).
In the optimization model, these operations are lumped together in Equation (29). Finally,
the estimated flows are summed in Equation (30) to obtain the total estimated flow Qest,
which is then used in calculating the horizontal error in Equation (31).

Figure 4. Calculation of the horizontal error for two variable speed pumps.

One should note the similarity between the formulation of the fixed speed pumps
in Equations (15)–(20) and the variable speed pumps formulation in Equations (28)–(33).
In fact, the former is a particular case of the latter when np,t = np∀t. Furthermore, in this
way, the hybrid case of a pumping station featuring both fixed and variable speed pumps
could also be addressed. As such, to use this methodology it is sufficient to implement
the formulation in Equations (28)–(33) for an arbitrary combination of fixed and variable
speed pumps.

3. Test Case and Results

As a test case, we consider a large pressure zone (PZ) in the Southern Israeli city of
Be’er-Sheva which is operated by the Mey-Sheva (https://mey7.co.il/en accessed on 25
January 2021) water cooperation.

The PZ is supplied by a single pumping station and has no storage tanks. The station
has four variable speed pumps, and each can operate over a range of frequency settings
which are correlated with their speeds. SCADA measurements (31 December 2019–03 May
2020) are available at 30 s intervals: suction and discharge pressures, total station flow, and
individual pump frequencies (SCADA data is available in Data Set S1 in the Supplementary
Materials). The frequencies are recorded as percentage [0, 100] for a range of 35–50 Hz.
When the value is 0% it indicates that the pump is turned off or operating at its minimum
frequency. There are no individual pump flow data and no power data. Power data are not
available even for the entire station.

The pumps are operated to maintain the discharge pressure of the station within pre-
specified range. As demand in the PZ increases, the pressure in the network decreases, and

https://mey7.co.il/en
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the speed of the operating pump is raised to meet the required pressure. The speed is raised
to the maximum speed and then another pump is switched on at its lowest speed, which
is increased if the pressure continues to drop. The controlled pressure is set to be around
47 m during daytime (06:30–23:00) and to about 42 m during night hours (23:00–06:30) as
seen in Figure 5.

Figure 5. Pumping station discharge pressure.

Observing the station’s overall Flow-Head Gain plot in Figure 6, it can be seen that
the station operates to produce a relatively constant discharge head for a wide range of
flows, owing to the control strategy setting stated above. The two regions (“data clouds”)
in Figure 6 correspond to the day and nighttime discharge-head points.

Figure 6. Pumping station Flow-Head Gain points.

We begin by scanning the SCADA data for points that correspond to a single pump in
operation, to determine the curves for each pump alone. This was done by searching for
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times where only one pump has a frequency greater than 35 Hz (>0% in the data) while all
other pumps are at a frequency of 35 Hz (=0%). Figure 7 shows the pump curves at the
nominal speed (as per Equations (21) and (22)) for the individual pumps as recorded by
the SCADA system. Figure 7 also shows the most recent available pump tests, which were
performed in September 2017 by the Israeli Water Works Association (IWWA).

Figure 7. Individual pump curves for the test case pumping station.

The following observations can be made from Figure 7: (a) the pump test curves are
parallel to the SCADA data; (b) the SCADA data are below the pump tests, as expected for
deterioration of pump performance over time; (c) the SCADA data for pump 4 is about
20 m below the test curve, which seems excessive and requires further investigation; and
(d) for pumps 2 and 3 the test covers only a small part of the actual flows experienced in
operation. In fact, for pump 3, the test only covers a small region which was rarely used in
the system.

Since the pumps operate alone only part of the time, it is necessary to evaluate
their curves while they operate in different combinations. Utilizing the optimization
methodology outlined in Section 2.3, (Equations (28)–(33)) we calculated the updated
curves (Figure 8). The curve parameters appear in Table 1. For the case studied herein, the
updated curve coefficients are not very different from the ones obtained when the pumps
operate individually, except for pump 1 where the difference is more pronounced. Still, our
generic methodology accounts for all available data for deriving the pump curves, thus
it can deal with situations where the pumps operate in different regions under different
conditions as was discussed in Figure 2.
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Figure 8. Estimated pumps curves for the test case pumping station.

Table 1. Pumps’ curve coefficients.

Pump
Single All

a b (×10−4) a b (×10−4)

1 64.00 0.621 66.29 0.701
2 66.63 6.163 65.78 5.826
3 85.62 1.364 83.93 1.309
4 51.05 1.072 51.07 1.073

4. Conclusions

In this study we present a practical pump curve constructing methodology for obtain-
ing individual pumps’ curves from partially available SCADA data. Using it, each pump’s
performance can be monitored continuously between physical on-premises inspections.
We considered the case in which the analyst aims at estimating the individual pump curves
whilst the measurements are only performed on the pump station level (i.e., only total flow
is available). We show that, unlike ordinary curve fitting techniques that minimize the
vertical error between observations and estimating curve, it is advantageous to use the
notion of horizontal errors (i.e., the deviation in terms of flow) since it does not require
deriving explicit functions for all pump combinations in the pumping station.

The proposed methodology is formulated as a non-linear optimization problem with
a small number of decision variables (two for each pump) which can be solved with open
source or commercial global solvers. The proposed optimization formulation is generic for
any number and type of pumps. Thus, it can be utilized for a single or multiple pumps,
and for fixed or variable speed pumps (and a combination of these types). The method can
estimate the pumps’ curves for any given amount of historical SCADA dataset, without
increasing the size of the optimization problem.

The methodology developed herein constitutes a contribution to an increasing trend to
“back-figure” system information from SCADA data. Relying on SCADA data for estimat-
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ing pump curves has significant practical implications. Field pump tests are expensive and
may even be impractical. Indeed, our results on a real test case show that the individual
pumps’ SCADA data and their corresponding field test results can be significantly different.
Furthermore, the field tests, for some of the pumps, cover only part of operating range.
This emphasizes the importance of the proposed methodology that derive the pump’s
curve over the entire operating range under different operating conditions. That is, the
method utilizes measurements not only from times when the pump operates alone, but
also when it operates together with other pumps. It is worth noting that these situations,
where different pump combinations operate at different time slots, are more common when
pumps are connected in parallel. Our methodology is tailored for pumps connected in
parallel, but still, a dedicated methodology for pumps connected in series is warranted and
will be considered for future work.

Unfortunately, in our test case the station power consumption data were not available,
and, therefore, the power and individual efficiency curves could not be calculated. Still,
if the station power consumption data were available, the methodology could be used to
estimate the individual power consumption curves.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-444
1/13/5/586/s1, Dataset S1: The SCADA data used in this study.
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Hedging for Privacy in Smart Water Meters
Elad Salomons , Lina Sela , and Mashor Housh

Department of Natural Resources and Environmental Management, University of Haifa, Haifa, Israel, Department
of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA

Abstract Smart water meters at household connections are being installed in large numbers throughout
the world due to the benefits they are expected to bring to the water utilities and water consumers. Smart
metering provides high‐resolution readings and promises benefits to the water utilities, such as demand
forecasting, regulating time‐of‐use watering, and making intelligent operation and planning decisions. For
the consumers, smart metering promises improved billing and demand reduction by providing detailed and
timely information about their water use and early notification of possible water leaks in their premises.
However, the fine‐grained information collected by smart meters raises growing concerns of privacy
invasion due to personal behavior exposure (private activity, daily routine, etc.). Nevertheless, there is no
readily available technology for protecting water consumers from revealing their in‐home private activities.
Thus, a viable argument in favor of smart metering technologies will not be possible without proactively
accounting for the associated privacy challenges. Here, we present a practical technology coupling a
dedicated apparatus with a control model for increasing personal privacy. We quantify the level of privacy
achieved using information‐theoretic criterion and an empirically based occupancy detection method
between the smart meter readings and actual water use. Furthermore, we evaluate and compare privacy
protection using the best effort approach previously developed for masking activities revealed from smart
electricity meters. The main results reveal that simple control actions can disguise personal behavior
patterns and, thus, hedge against privacy breach in smart water meters. Furthermore, we quantify the
trade‐off between the size of the apparatus and the level of privacy protection it provides. Our results
demonstrate how “privacy friendly” smart water metering technology could be implemented in real‐life
systems and reduce the privacy concerns of water consumers.

1. Introduction

Smart water meters, continuously collecting and transmitting water usage, are changing the paradigm for
managing residential water use. Installation of smart water meters is expected to surpass 100 million units
by 2030, with water‐stressed developed cities leading the rollout of smart water meters to address growing
concerns of water shortages (Smart Energy International, 2018). Smart water meters promise benefits to
the water utilities battling with inaccurate, labor‐intensive meter readings, consumer billing, nonrevenue
water losses, water scarcity, and growing demands (Gurung et al., 2014, 2015; Stewart et al., 2018). The
increased spatial and temporal water consumption data enables improved demand modeling, prediction,
and demand management strategies as well as making optimized operation and planning decisions
(Cominola et al., 2015; Gurung et al., 2017; Nguyen et al., 2018; Zhuang & Sela, 2020). Several recent works
have demonstrated the successful application of disaggregating smart water meter data to infer specific
usage associated with human activities at the individual household level (e.g., shower and sink activities).
Although most rely on high‐temporal resolution of 1–60 s (Clifford et al., 2018; Cominola et al., 2019;
Nguyen et al., 2013; Vasak et al., 2015), others have demonstrated the applicability of identifying personal
activities with coarser temporal resolution of 15 min sampling rate (Chen et al., 2011).

Despite the fact that the aforementioned benefits advocate for smart water meters, the fine‐grained informa-
tion collected by smart meters raises growing concerns of privacy invasion due to personal behavior expo-
sure (private activity, daily routine, etc.) and potential data misuse (McKenna et al., 2012; Véliz &
Grunewald, 2018). Currently, privacy is a sweeping concept, encompassing, in the context of smart water
meters, control over personal information (Jamieson, 2009; Solove, 2010; Weaver, 2014; Zipper et al.,
2019). Multiple ongoing and unresolved debates regarding the definition of the illusive concept of privacy
arise beyond the revealing personal household activities, including ownership of information and,
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moreover, how this information may be used for discrimination, search, and surveillance (Ząbkowski &
Gajowniczek, 2013). Interestingly, the privacy paradox reveals the discrepancy between users' attitude
toward privacy concerns and their actual behavior in limited undertaking of countermeasures to protect
their privacy (Barth & de Jong, 2017). In the smart water meter setting, this paradox maybe partially attrib-
uted to the lack of understanding or unawareness of the consumers of the embedded privacy in their water
consumption data. At the very least, through simple data mining techniques, smart meter data could be
easily used to detect home occupancy, and through more sophisticated data mining techniques, detection
of specific devices (e.g., dish and clothes washing machines) can be discerned and utilized for targeted adver-
tisements. Analyzing private water use activity can be used to evaluate personal hygiene habits to help
reduce the spread of infectious disease, use to track hygiene compliance in retail food establishments and
hospitals (Allwood et al., 2004; Pittet, 2001), and understand gender and ethnic differences in hygiene prac-
tices (Anderson et al., 2008; Horsburgh et al., 2017). A striking example of embedded privacy in water
metered data occurred when the information revealed from smart water meters was used as evidence against
a murder suspect in Arkansas, USA, who was accused partially based on smart water meter readings
obtained without a warrant from the water department. The water meter data were used to claim that the
suspect had used a large amount of water in the middle of the night to clean up the crime scene (Jerome,
2017). Information from smart energy meters about detected electricity theft has been associated with the
detection of cannabis plantations (Depuru et al., 2011). Furthermore, Quinn (2008) argued that the privacy
threat of smart meter goes beyond exposing private information to a large‐scale spy.

The protection of privacy is supported in different legal frameworks including laws, policies, and regulations
(Jawurek et al., 2012). In Europe, data privacy is covered under the General Data Protection Regulation
(European Union, 2016), which requires that personal data should “be collected for a specified purpose
and not be further processed for other purposes”. In the United States, individual privacy is protected, from
the state, by the Fourth Amendment law, which was recently employed against smart meters in the U.S.
Court of Appeals (United States Court of Appeals, 2018). Privacy tools, relying on institutional rules and
mechanisms, can help the different stakeholders (e.g., service providers, organizations, utilities, and tech
companies) to implement privacy tools without the need to change the technical system. In addition to priv-
acy tools, smart metering systems are expected to uphold the highest security requirements. While security
and privacy are often used interchangeably, security requirements of smart meters involve providing reliable
delivery of data in terms of data integrity, for example, prevention of malicious unauthorized modification of
the data, which might lead to incorrect billing or operation of the system; and confidentiality, in terms of
unauthorized access to information by third parties (Souri et al., 2014). The security requirements, similarly
to privacy tools, are addressed at the organization and the service provider level and have been the preferred
approach for addressing privacy issues associated with smart meters. Nevertheless, fundamental weakness
of privacy and security tools stems from the inherent reliance on the trustworthiness of all parties involved
(e.g., trust between end user and water utility) in the process (Jawurek et al., 2012). In light of the above,
there is a need for a privacy preserving system to prevent privacy breach a priori through privacy technology
rather than policy. That is, a technological solution that does not depend on trust relationships and enables
the individual to conceal their personal activity.

Naturally, the aforementioned privacy concerns arise in other metered utilities at the household level
including electricity and gas (Véliz & Grunewald, 2018). Privacy enhancing technologies have been pre-
viously proposed in the smart electricity grid literature (Jawurek et al., 2012; Kalogridis et al., 2010;
McKenna et al., 2012). Several approaches have been proposed predominantly utilizing battery‐based load
hiding (BLH) paradigm. The main idea of BLH approaches is to utilize the battery to conceal the real energy
used for household activities by charging and discharging the battery and, thus, offsetting the actual timing
and volumes of the true demands. Given the size of the battery, the control actions prescribe the timing and
rate of battery charging/discharging. In Kalogridis et al. (2010), the Best Effort (BE) algorithmwas proposed,
which minimized changes in meter readings in consecutive time steps. Privacy levels were measured using
relative entropy for quantifying the distance between two signals (i.e., real and observed demands), cluster
classification, and regression coefficients of the signals with and without privacy preserving system. In
McLaughlin et al. (2011), the nonintrusive load leveling control scheme was proposed, which offset spikes
and dips in usage by charging or discharging the battery, targeting instantaneous energy usages that expose
human behavior. Several evaluation metrics were proposed including relative mass, residual features, and
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entropy, which count the number of features in the signal that can disclose activity and quantify the amount
of information encapsulated in the signal. A randomized approach for generating noises was proposed in
Zhao et al. (2014) achieving differential privacy by controlling noise selection. An interesting exception to
BLH approaches was proposed in Chen et al. (2015) using electric water heaters to modulate the energy
embedded in the hot water. Matthews correlation coefficient was used to evaluate the performance of occu-
pancy detection (OD) of four different detectionmethods, including thresholds, k‐nearest neighbors, support
vector machines, and hidden Markov models. The use of water heater for storing energy showed to outper-
form BLH approaches.

Despite the abovementioned technologies for privacy protection in the energy sector, the water sector is lag-
ging behind in addressing privacy concerns. It follows that addressing privacy concerns stemming from
smart electricity meters without smart water meters will inhibit achieving desired privacy goals. To address
this gap, this paper aims to develop a privacy preserving system (PPS) to hedge for privacy in smart water
meters. The approach proposed in this study is motivated by related work for increasing privacy in smart
electricity meters (Asghar et al., 2017; Jawurek et al., 2012; Kalogridis et al., 2010; Rial & Danezis, 2011).
Specifically, we propose a practical technology coupling a flow control valve and precharged water tank with
a control model for increasing personal privacy in a household equipped with a smart water meter.
Noteworthy that while privacy hedging can be achieved by simply controlling the sampling rate of the smart
meter, for example, a reduced sampling rate implies greater privacy protection (Chen et al., 2011; Cominola
et al., 2018), the sampling and transmission rate are controlled by thewater utility or the service provider and
are not controlled by the water user. In this paper the proposed approach is controlled and implemented by
users that seek increased privacy. This approach is tested using real demand data collected from multiple
houses of different characteristics across North America (DeOreo et al., 2016), and the results show a signif-
icant increase in privacy protection even with a small‐size water tank.

This paper is structured as follows. In section 2.1, we present the proposed design of the PPS, and in
section 2.2, we describe the flat‐flow (FF) privacy moderation algorithm. In section 2.3, we propose an
information‐theoretic and empirically based approaches to evaluate the level of privacy in smart meter data.
Ideally (from a privacy viewpoint), all water usage events should be concealed; however, in practice, perfect
privacy is costly, which introduces a trade‐off between cost and privacy protection level. Hence, in section 3,
we demonstrate the approach and explore the trade‐off between the level of privacy protection and the size
of the PPS and compare the system performance under different privacy moderation algorithms, that is, the
FF algorithm proposed in this work and the BE algorithm proposed in Kalogridis et al. (2010) for achieving
privacy in electricity data. In section 4, we discuss the implications of wide adaption of the PPS for water uti-
lities and the end users.

The contribution of this paper is as follows. First, it reveals some of the discordance between the benefits and
the associated privacy concerns of smart water meters. Second, it proposes a new and practical technology
coupling a hardware apparatus with a software control model for hedging personal privacy in the presence
of a smart water meter. Third, it presents quantifiable privacy measures that enable the comparison of dif-
ferent privacy control actions. Lastly, it promotes the research toward privacy‐sensitive design and imple-
mentation of smart metering systems.

2. Methodology

The proposed PPS is a combined hardware‐software solution, installed by the water consumer within their
premises, where the designed physical component can support different control strategies. The proposed
PPS is shown in Figure 1. The main objective of the PPS is to conceal the true end use water consumption
data by modulating the inflow and, thus, the readings of the smart water meter. Next, we describe the phy-
sical setup, the control actions (i.e., privacy moderation algorithm), and the evaluation metric.

2.1. System Overview

In the proposed setup, water is supplied from the distribution network through the service line to the pre-
mises. The smart water meter is located at the connection between the service and the premise lines, mea-
suring the flow rates and transmitting the data to a centralized database. The collected measurements
provide detailed end use water consumption data, and in turn, end user private information. The PPS,

10.1029/2020WR027917Water Resources Research

SALOMONS ET AL.



located downstream of the smart water meter, consists of two main physical components: a flow control
valve (FCV) and a precharged water tank. The privacy moderation algorithm regulates the flow in the
FCV according to the specified control rules and in accordance with the state of the precharged water tank.

A precharged, usually ametal, water tank includes a flexible water bladder, while the rest of the tank is filled
with compressed air at a precharged pressure (see illustration in Figure 2). The tank is refilled and drained
based on pressure set points and acts like a buffer between the water meter and premises. Tank operation
includes four states: (a) the water bladder is empty and the air expands to fill the tank's volume outside
the bladder (Figure 2a); (b) water is filling the bladder while the air is compressed (Figure 2b); (c) when a
preset air pressure is reached, the water flow into the bladder stops and the tank is considered full
(Figure 2c); and (d) water flows out of the bladder by the compressed air pressure (Figure 2d). Note that pre-
charged tanks are readily available hydraulic devices, which have common uses in domestic plumbing
(Pentair, 2020). In addition to the FCV and the precharged tank, a bypass valve is included in case the system
should be overridden, for example, during emergency situations (Figure 1). The proposed PPS is suitable for
single‐family residential users and can be conveniently placed in the premises by using a pipeline extension
downstream of the water meter. Additionally, as we will show in the results, the size of the precharged water
tank is comparable with the typical residential water heater, thus practically feasible for installation in
single‐family residential homes. We note that in some single‐family residential buildings and apartment
buildings, it may be difficult to find a place for such a system. Moreover, feasibility of installation of the
PPS in multifamily residential buildings will require further investigation.

Given the physical setting in Figure 1, the problem is how to maximize the privacy protection by designing a
privacy moderation algorithm to control the PPS given any set of end user demand, Q , and predetermined
tank capacity V , while recognizing the uncertain nature of the demand. That is, we seekT :Q →Q , a
transformation T from the real end user demand, Q , to the measurable FCV flow, Q .

2.2. Privacy Moderation Algorithm

In the proposed setup, at any given time t, the smart water meter records the flow upstream of the water
tank,Q (t), rather than the actual end use demand, Q (t), downstream of the tank. Intuitively, the control
model minimizes the variation in the flow, as recorded by the smart water meter, by controlling the FCV to
maintain constant flow when possible. The control actions and the resulting privacy hedging depend on the
volume of water in the tank, as follows. For a given time t, the mass balance in the tank is given by
Equation 1.

Figure 1. Privacy preserving system schematics.

Figure 2. (a–d) Precharged water tank schematics.
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dV tð Þ
dt

¼ QFCV tð Þ − QD tð Þ (1)

where V(t) is the water volume in the tank, Q (t) is the flow through the control valve, and Q (t) is con-
sumer's demand. The demand is determined by the consumer, and we assume that the water utility can
supply the maximum historical demand, Q at any given time. The controlled variable, in this setup,
is the flow through the FCV, that is, Q (t) at every time step, which is also the flow measured by the

water meter. Clearly, when the volume of the tank does not change, that is, when
dV
dt

¼ 0, the water meter

will measure the demand, Q ¼ Q . The proposed control scheme, aiming at keeping a constant inflow
(i.e., flat flow), evaluates the water level in the tank and determines the setting of the FCV in the next time
step: When the volume in the tank is within the acceptable range, the flow through the FCV is set to con-
stant reference flow rate Q ; when the tank empties, FCV fully opens and the flow is set to Q , to
supply the demand and recharge the tank; when the tank is full, the FCV closes and no flow is supplied
from the service line. The control actions for the FF algorithm are summarized in Table 1. The reference
and maximum flow rates are determined based on the historical demand of the specific end user, and the
time step is determined based on the temporal sampling resolution of the smart meter.

2.3. Evaluation of Privacy Protection

To judge the effectiveness of a proposed transformation T : Q → Q , it is necessary to define a privacy
metric that quantifies the level of privacy protection that the transformation can offer. We propose two com-
plementary approaches to evaluate the level of privacy in smart meter data: information‐theoretic and
empirically based approaches. While both measure the potential amount of information revealed about
the end user behavior from the smart meter data, the former provides a more abstract measure of privacy
and the latter specifically targets the ability of a privacy intruder to detect occupancy. The details of the pro-
posed evaluation methods are as follows.
2.3.1. Normalized Mutual Information
First and foremost, we seek a privacy metric that takes the true end user demand, Q , and the smart meter
readings,Q , as inputs and returns a numerical measure of privacy level as an output. As we do not know
how a privacy intruder might exploit the collected data, it is necessary to develop a metric that quantifies the
amount of leaked information regardless of the data mining algorithm or the computational capabilities of
the intruder. Intuitively, privacy is maximized when the recorded data are completely independent of the
true end user demand data. Under these conditions, the information leakage is minimized, and it will not
be possible to infer any private information from the smart meter readings. Information‐theoretic metrics
can be used to measure the amount of inherent information available for exploitation by a privacy intruder.
Evidently, if the amount of private information available for learning from the measurable data, Q , is
small, then the privacy loss is bounded by this small amount regardless of how the intruder operates.
Thus, if the PPS satisfies privacy in an information‐theoretic sense, user's privacy is protected, and privacy
breach is reduced. An abundance of previous studies explored privacy issues from a fundamental
information‐theoretic perspective (e.g., Ma & Yau, 2015; Wagner & Eckhoff, 2018). A widely used privacy
metric to measure the leaked information from smart meter readings is the Mutual Information (MI),

Table 1
Privacy Moderation Algorithm

Algorithm 1: Flat‐flow algorithm

1: Input: Water demand Q , size of the precharged tank, V and V
2: Output: Water meter readings Q
3: Initialize: t ¼ t ,V(t) ¼ V ,Q (t),Q (t)
4: Set: Flow through the control valve Q (t+Δt):

if tank is full V(t) ¼ V set flow to 0
elseif tank is not full V < V(t) < V set flow to Q
else tank is empty V(t) ¼ V set flow to Q

5: Update: Water volume in tank V(t+Δt) ¼ (Q (t) − Q (t))Δt+V(t)
6: Repeat: t ¼ t+Δt
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which measures the dependence between the true demand and smart meter readings while considering
them as two random variables (Giaconi et al., 2015; Rajagopalan et al., 2011; Tan et al., 2013; Varodayan
& Khisti, 2011; Wu et al., 2006). In this study, we adopt theMI metric to quantify the amount of leaked infor-
mation from the transformation T between end user demand, Q , and the smart meter readings, Q , that
is, MI(Q ,Q ).

The MI between two discrete random variables X,Y is defined in Equation 2.

MI X ; Yð Þ ¼ H Xð Þ− H X jYð Þ (2)

where H(X) is Shannon entropy and H(X|Y) is conditional entropy of the random variable X given the ran-
dom variable Y. The two random variables have realizations, x,y, which take values from finite support
sets, x,y, according to a joint probability mass function P and marginal probability mass functions P ,
P for X and Y, respectively.

As seen in Equation 2, MI is defined relying on Shannon entropy (Shannon, 1948),H(X), which is the basis of
many information‐theoretic metrics. Shannon entropy measures the amount of randomness in the random
variable based on the probabilities of the possible realizations as defined in Equation 3. The larger the
amount of randomness in the random variable the larger the entropy. H(X|Y) is the conditional entropy of
the random variable X given the random variable Y. The conditional entropy measures the amount of
remaining randomness in X after observing Y (i.e., the unexplained randomness) and is calculated based
on the conditional probability as shown in Equation 4.

H Xð Þ ¼ − ∑
x ∈ X

PX xð Þ � log2 PX xð Þð Þ (3)

H XjYð Þ ¼ − ∑
x ∈ X

∑
y ∈ Y

PXY x; yð Þ � log2
PXY x; yð Þ
PY yð Þ (4)

Based on the above, MI(X,Y) measures the reduction in the amount of randomness of X after observing Y,
that is, the explained randomness in X after observing Y, which could be interpreted as the MI between X
and Y.

In our context, X represents the true end user demand, Y represents the smart meter readings, and MI quan-
tifies how much information is leaked from the true demand by revealing the smart meter data. Namely, if
the intruder were to apply a disaggregation algorithm to detect usages based on the smart meter data, then
MI quantifies how much information about the true demand will be revealed (i.e., the amount of leaked
information from the PPS). Low values of MI imply small information leakage and, thus, higher privacy pro-
tection. For example, in case of constant smart meter readings, the amount of randomness in the end user
data given the meter reading (i.e., conditional entropy) will be equal to the amount of randomness in the
end user data itself (i.e., its entropy), as such the MI will be 0. At the other extreme, in case the smart meter
measures the actual end user demand, the conditional entropy will be 0 and the MI will be equal to the
entropy of the end user data. As such, MI ranges between 0 and the entropy of the end user demand,
H(X). To allow for comparison between different scenarios (e.g., different end users), the normalized MI
metric,NMI(X,Y), can be defined as given in Equation 5, which takes values between 0 and 1.

NMI X; Yð Þ ¼ 1 −
H XjYð Þ
H Xð Þ (5)

The NMI can be interpreted as the proportion of explained randomness in X when the variable Y is
observed. In our context, NMI is the fraction of information about the end user data that is exposed from
the smart meter readings (Koo et al., 2012).
2.3.2. OD
The NMI measure quantifies the level of privacy regardless of the specific detection algorithm that a privacy
intruder may use. In addition, we propose a simple OD algorithm that can be used to evaluate and compare
the performance of the PPS for different tank sizes and control algorithms. We consider a simple
duration‐based threshold algorithm that attempts to reveal the time instances in which the household is
occupied (or not). Specifically, if zero flow is recorded continuously by the water meter for a specified
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epoch time, t , it is assumed that the household is not occupied. Then a comparison can bemade between the
inferred occupancy without and with different PPS. The characteristic epoch time, t , can be estimated and
calibrated for different households and stratified for different times of day based on the historical water
usage. While more sophisticated demand disaggregation algorithms targeting specific water usages exist,
occupancy detection provides a single best measure of privacy intrusion, as well as it does not require
detailed and fully labeled water usage data (Nguyen et al., 2015).

3. Results
3.1. Data Set Description

We test the performance of the proposed algorithm using real demand data sets obtained from the
Residential End Uses of Water study (DeOreo et al., 2016). The results are demonstrated using four house-
holds (with one to four residents) in North America, which differ in the number of residents (one to four),
their geographic location (Central, South and North regions of North America) and their daily demand
patterns.

Table 2 summarizes the four data sets, and Figure 3 shows the average, minimum and maximum hourly
demands profiles of the four households. As can be observed, the demand patterns for the different data sets
vary in the hourly distribution and the peaks. For example, Data Set 1 (Figure 3a), is a one‐person household,

Table 2
Summary of the Data Sets Used

Data
set City

Number of
people

Data duration
(days)

Total volume consumed
(m )

Average flow rate Q (10
m /s)

Maximum flow rate Q (10
m /s)

1 Denver 1 11 1.63 1.72 2.84
2 Mississauga 2 12 6.04 5.37 3.98
3 Kissimmee 3 12 10.09 9.57 2.82
4 Denver 4 12 7.14 6.40 3.49

Figure 3. Mean, maximum, and minimum hourly demand for Data Sets 1–4 (a–d, respectively).
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which has most of its demand in themorning hours and no demand in the rest of the time as probably no one
is present in the house at these times. For Data Set 3 (Figure 3c), which is a three‐person household, there is a
more “classical” demand pattern with small peaks in the morning and afternoon and less demand during the
night hours.

3.2. Privacy Moderation Algorithm

For each data set, we tested the proposed FF algorithm (Table 1), where the average and maximum flow
rates were calculated based on the historical demand patterns of each household (as listed in Table 2),
V and V were set to 0 and the size of the water tank, respectively. To explore the trade‐off between
the privacy level and the size of the water tank, we evaluated the NMI metric by incrementally increasing
the size of the water tank between 0 and 0.8 m , where the largest water tank represents the average daily
consumption of the highest water consuming household (Data Set 3). Figure 4 illustrates the resulting
NMI scores for all households as a function of the size of the storage tank. For all data sets, the maximum
value of 1 is achieved for a zero‐volume tank, that is, without PPS. In this case, the demand is directly sup-
plied by the water utility, thus entirely exposing the water use pattern. As the tank's volume is increased, the
NMI value decreases. In the tested range (0–0.8 m ), the NMI for Data Sets 1 and 2 decreases to 0 at 0.61 and
0.59 m , respectively. In these cases, maximum privacy is obtained, since the flow measured by the water
utility at the water meter is constant and does not reveal any pattern of the water use. Interestingly,
Household 2 exhibits a sharper decrease in NMI scores compared with Household 1, despite having a higher
total demand. This is attributed to fact that the temporal variation of water usage throughout the day con-
tains valuable information regarding the end user's behavior.

Next, in Figure 5 we show the variation in the inflow, Q (which is also the flow through the smart water
meter), the water volume in the tank, V(t), and the true water demand for Data Set 1 for three different tank
sizes: 0.075, 0.2, and 0.61 m . For a tank size of 0.075 m (Figure 5a) the value of NMI is 0.15. The results
show that the metered inflow observed by the smart meter is significantly different from the actual end user
water demand, where during the majority of the time steps, the inflow, Q , is equal to the average flow,
Q . Occasionally, when the demand is high and the tank is empty, a high inflow from the valve, Q ,
is engaged to refill the tank and satisfy demand (as can be seen at the beginning of Day 3 in Figure 5a).
For the cases where the tank is full and the demand is less than Q , a valve closure is invoked, such

Figure 4. NMI as function of the tank volume for the four data sets.
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that Q is equal to 0 (as can be seen at the end of Day 1 in Figure 5a). Similar behavior is observed for a
larger tank size of 0.2 m (Figure 5b); however, a smoother behavior is observed for the water volume in
the tank and the inflow through the smart meter. As expected, a lower NMI value of 0.0638 is achieved.
Note that the size of a typical residential water heater for three to four family size ranges between 0.19
and 0.3 m , which is comparable in size to the proposed precharged water tank. In the last case, with
0.61 m tank (Figure 5c) NMI reduces to 0. We observe that the tank is never fully empty or full, and the
inflow is maintained at constant value, that is, Q is always equal to Q . Similar plots are provided
for the rest of the households in Figures S1–S3 in the supporting information (SI).

In addition to NMI, we evaluate the level of privacy by deploying the occupancy detection algorithm and
evaluating the detection for different tank sizes.We start by detecting the occupancy using the original meter
data without the PPS, setting the epoch time to 2 hr during the day and 5 hr during the night. In other words,
if zero flow was recorded by the water meter for over 2 hr during the day or 5 hr during the night, it was
assumed that the residence is not occupied. Figure 6 shows the occupancy detection for Data Set 1 for the
three different tank sizes: 0.075 (PPS1), 0.2 (PPS2), and 0.61 (PPS3) m with the FF moderation algorithm.

Figure 5. Changes in demand, smart meter readings, and water volume with time in Data Set 1 for different tank sizes: (a) 0.075, (b) 0.2, and (c) 0.61 m .

Figure 6. Occupancy detection in Data Set 1 for different tank sizes: (PPS1) 0.075, (PPS2) 0.2, and (PPS3) 0.61 m with
the FF moderation algorithm.
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The true occupancy is shown at the bottom, where the dark and light
colors represent time periods with and without occupancy, respec-
tively. It is evident that the PPS can hedge against occupancy infor-
mation leakage even for a small‐size tank (i.e., PPS1). As expected,
for a larger size tank (i.e., PPS3) the occupancy is almost entirely
hidden.

3.3. Comparison With the Best Effort Algorithm

Next, we compare the performance of the proposed FF privacy mod-
eration algorithm, with the best effort algorithm (BE) previously pro-
posed by Kalogridis et al. (2010) for moderating home electricity load
signature to hide the home appliance usage information. The BE
algorithm aims at minimizing the change in the metered value
exposed to the utility between two successive time steps, that is, mini-

mize ΔQ (t)¼ Q (t) − Q (t − Δt). In this case, Q only changes when the tank is empty or full and
then it is assigned the value of the exact demand, Q . Unlike, the proposed FF algorithm, which tries to
maintain a constant inflow, the BE algorithm tries to adjust the current inflow to the inflow of the previous
time step (i.e., in a sense BE algorithm uses dynamic reference flow as opposed to a fixed reference as in the
FF algorithm). The BE control actions are summarized in Table 3.

Figure 7 shows the variation in the tank water volumes applying the FF and BE algorithms given a 0.5 m
size tank for Data Set 3. Under the FF control, the tank empties and fills only several times during the simu-
lation period, whereas using the BE algorithm, the tank empties and fills frequently on a (almost) daily cycle.
Thus, the FF algorithm achieves a greater privacy hedging compared to the BE algorithm, NMI of 0.0059 and
0.0838 for the FF and the BE algorithms, respectively. Similar results are observed for the rest of the house-
holds (see Figures S4–S6 in the SI). Note that the less frequent emptying and filling cycles in the FF algo-
rithm do not imply a lower rate of water replenishment in the tank, that is, keeping the volume constant
does not necessarily imply that the same water remains in the tank during the entire time period. Indeed,

Table 3
Best Effort Moderation Algorithm

Algorithm 2: BE algorithm

1: Input: Water demand Q , size of the precharged tank, V and
V

2: Output: Water meter readings Q
3: Initialize: t ¼ t ,V(t) ¼ V ,Q (t),Q (t)
4: Set: Flow through the control valve Q (t+Δt):

if tank is full V(t) ¼ V set flow to 0
elseif tank is not full V < V(t) < V set flow to
Q (t)
else tank is empty V(t) ¼ V set flow to Q (t)

5: Update: Water volume in tank V(t+Δt) ¼ (Q (t) − Q (t))Δt+V(t)
6: Repeat: t ¼ t+Δt

Figure 7. Changes in water volume of a 0.5 m tank resulting from applying the FF (top) and BE (bottom) algorithms to
Data Set 3.
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the high‐frequency fluctuations observed in the FF water volume are the true indication of water replenish-
ment in the tank (see Figure 7).

For the same tank size of 0.5 m , Figure 8 shows the user's demand and the metered inflow, Q , for the FF
(top) and BE (bottom) controls. While the FF flow maintains the flat value of Q the majority of the time,
the BE flow fluctuates in a wider range, which, in turn, increases the NMI between the user's demand and
the water meter's readings. Similar results are observed for the rest of the households (see Figures S7–S9 in
the SI).

To compare the performance of the FF algorithm with the BE algo-
rithm, we have incrementally increased the size of the water tank
between 0 and 0.8 m , while applying the FF and BE algorithms.
Figure 9 presents the resulting NMI for Data Set 3 (and
Figures S10–S12 in the SI illustrate similar results for the rest of the
data sets). The results show that for very small tank sizes, the BE algo-
rithm provides lower NMI, and thus better privacy hedging, for tanks
larger than 0.08 m (approximately 10% of average daily demand), the
FF algorithm significantly outperforms the BE algorithm.

Figure 10 shows the occupancy detection for the three tank sizes, as
previously discussed. Comparing the performance of the two privacy
moderation algorithms (FF in Figure 6 and BE in Figure 10), we
observe that the two algorithms mask occupancy in different ways.
For example, examining the PPS3 case, the BE algorithm will show
that the household is not occupied most of the time, while the FF
algorithm will show occupancy at all the times. On one hand, the
two algorithms are comparable in the sense that both mask occu-
pancy. On the other hand, we assert that if our goal is to prevent theft
when the household is not occupied then the FF algorithm outper-
forms the BE algorithm by showing occupancy most of the time.

Figure 8. Demand and changes in smart meter readings for Data Set 3 resulting from applying the FF and BE algorithms
with 0.5 m tank.

Figure 9. NMI for the FF and BE algorithms for Data Set 3.
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4. Discussion

Smart water meters can facilitate the efficient management of vital water resources in the urban environ-
ment. Advances in sensing technologies, machine learning techniques, and surging data availability are
enabling new ways for realizing smart water metering infrastructures, which can provide improved under-
standing of consumer behavior and more efficient process management (e.g., leakage detection and
improved water demand forecasting for operational purposes). Due to the consensus around the benefits
smart water meters provide, many studies (e.g., Clifford et al., 2018; Cominola et al., 2019; Davies et al.,
2014) have mainly focused on data analysis and modeling of smart meters from the water utility perspective.
Nonetheless, we assert that the social aspects, and more specifically the water user perspective, should be
taken into account before wide adoption of smart water systems can be materialized. Introducing user priv-
acy protection technology is vital to relieve public resistance to the adoption of new technology and to pro-
mote widespread implementation of smart metering infrastructure, which is needed to enhance the
management of urban water systems.

Shifting the paradigm from strictly economic and environmental objectives, social awareness is an increas-
ingly applied concept in planning, management, and operations ofwater supply systems (Packett et al., 2020;
Schaider et al., 2019; Vanderslice, 2011). However, studies including social awareness of assessing privacy
concerns as related to advanced watermetering infrastructure are scarce. Furthermore, lack of specific infor-
mation and difficulties in linking the performance of smart metering technology to privacy breach implica-
tions on end users hamper the inclusion of privacy awareness in planning and management of urban water
supply systems. Water utilities can use the privacy measure proposed in this work in order to integrate the
social considerations, which may be otherwise overlooked, into planning and management of smart meter-
ing infrastructure. This information can additionally be used by the water utilities to inform consumers
about the hidden implications of advanced metering systems. On the consumer side, this information can
be used to evaluate their privacy concerns. Furthermore, some users might not oppose to smart meters
installation at their household (depending on their subjective valuation of their privacy), while others might
oppose to the smart meters realizing the hidden privacy implications. Different states in the United States, as
well as countries around the world, employ different opt‐out policies for smart meter installation. These
include no opt‐out policies in place, case‐by‐case opt‐out programs, requiring end user consent, and prohi-
biting opt‐out (CitizensAdvice, 2020; King& Jessen, 2014; Shea &Bell, 2019). In the event that the consumer
cannot prevent the installation of a smart meter, the PPS proposed in this work can be a potential solution

Figure 10. Occupancy detection in Data Set 1 for different tank sizes: (PPS1) 0.075, (PPS2) 0.2, and (PPS3) 0.61 m with
the BE moderation algorithm.
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for the consumer. The current study presents an initial analytical investigation of a privacy protection sys-
tem; thus, it provides an entry point toward privacy‐sensitive design and implementation of smart metering
systems.

Our results indicate that the proposed PPS can yield significant privacy hedging even when a small‐size tank
is used. A significant reduction in NMI (from 1 to 0.1) is achieved with a small tank volume of 0.2 m
(Figure 4) as well as increased OD protection (Figure 6). Since the tank size is directly correlated with the
cost of the PPS, there is an advantage for using smaller tanks in the system. The results show that the PPS
obtained better privacy hedging when managed by the proposed FF privacy moderation algorithm when
compared with the BE algorithm (NMI of 0.07 compared to 0.15 for a tank volume of 0.2 m as seen in
Figure 9). Another key advantage of the FF algorithm is its ease of implementation. Note that the FCV in
the FF control rule should take only one of three values {0, Q ,Q }, while in the BE algorithm it can
take any continuous value in the range [0, Q ]. This property impacts the type of the hardware required
in the system. That is, the FF control rule requires an actuator that can work with three discrete control
inputs, whereas the BE control rule requires an actuator with continuous control inputs. Aside from the
higher complexity in the continuous setup, it is also expected to be more prone to failures. Thus, the PPS with
a continuous control logic is expected to impose higher capital and maintenance cost.

Noteworthy is that implementing the proposed PPS does not necessarily impair all the benefits of smart
meters. Smart meters are expected to improve demand management by utilizing customer activity to alert
of abnormal water use such as bursts and leaks in the premises. Readily available smart meters management
systems use simple alerts for water overuse (Lloyd Owen, 2018), such benefits of the smart meters are not
necessarily lost if the proposed PPS is installed. For example, even in the presence of the PPS, anomaly detec-
tion algorithms can still be applied using aggregated water consumption data (e.g., several hours in the day)
to infer abnormal water use (it should be noted that small leaks, in themagnitude of the demand hourly var-
iation, may be difficult to detect). On the other hand, the PPS installation could impair the effectiveness of
other demandmanagement strategies that require disaggregating of high‐resolution water demand data into
specific water use events. Several studies (e.g., Jessoe & Rapson, 2014; Zhuang & Sela, 2020) argued that
water use events at the end user level could help in understanding the influence of technology‐, policy‐,
and price‐based strategies on consumers' behavior and assessing their effectiveness.

Wide adaption of the PPS may have positive externalities for the utilities as well as the end users. From the
water utility side, the tanks in the PPS serve as surplus storage in the system. This, microstorage, distributed
storage can add a significant storage capacity to the system when widely adapted by end users. Adding sto-
rage capacity to the system can advantageously flatten the demand curve, which contributes to a better
water‐energy nexus management in the context of optimized tariff‐based pumping. Moreover, flattened
demand patterns dampen peak flows, shift loads to off‐peak hours, and, thus, can lead to reduced head losses
and pressures, which in turn affect water losses, energy demand for pumping, treatment, and distribution,
and associated costs (Plappally & Lienhard V, 2012). In the long run, reducing the peak flow can postpone
system expansion and rehabilitation (Beal & Stewart, 2014; Beal et al., 2016; Gurung et al., 2015). On the end
user side, this microstorage can contribute to increased reliability in case of water outages and act as a pro-
tective physical barrier between the water supply network and the premise plumping (e.g., during pressure
transient events).

Our results build on the NMI as an information‐theoretic metric to measure the amount of inherent infor-
mation available for exploitation by a privacy intruder. Although NMI (and its variant MI) is widely adopted
as a privacy measure, due to its distinct feature of measuring privacy regardless of the operational details of
the intruder, it does not account for the temporal correlation between the data readings (Ma & Yau, 2015;
Yang et al., 2012). Temporal correlation is expected in the end user water demand, as the consumption at
time t is likely to be correlated with consumption at time t − 1. In general, an attacker might be able to
exploit such correlation. To address this issue, Yang et al. (2012) considered the MI between distributions
of consecutive pairs of readings instead of individual elements. Nevertheless, noting that our FF algorithm
produces flat flow for the majority of the time steps (see Figure 5), the temporal correlation in the metered
data is very small, indicating that a low NMI will be achieved in the system even when calculated based on
consecutive pairs of readings. Future research directions should address temporal correlations as well as
additional privacy measures for evaluating the performance of privacy hedging controls.
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5. Conclusions

As smart meters installations gain popularity with utilities providers across different sectors, consumers'
concerns of possible privacy infringement are growing as well. While the energy sector has been primarily
leading the research for smart electricity meters, the water sector is lagging behind. This research aims to
promote the discussion and research on smart meters in the water sector. To this end, we propose a new
and practical technology coupling a hardware apparatus with a software control model for hedging personal
privacy in the presence of a smart water meter. The proposed physical PPS can be also used to investigate
different control algorithms in the context of multiobjective analysis that trade‐off privacy hedging with
other performance metrics (e.g., reliability).

The new approach is demonstrated using real water demand data, and the results show a significant increase
in privacy protection even with a small‐size water tank. We quantified the trade‐off of the level of privacy
protection and the size of the system (as surrogate for system's cost) and compare the system performance
under different privacy moderation algorithms using information‐theoretic (NMI) and empirically based
(OD) criteria. Nonetheless, our gross estimate for midsized system is below U.S. $1,000 (a basic cost estimate
of the main components is outlined in Text S1 in the SI). Further research is needed to address the discussed
limitations including in‐depth economic analysis and the feasibility of the proposed PPS, implementing
more interpretable privacy measures, and consumers' willingness to pay for added privacy.

Data Availability Statement

Data are available through DeOreo et al. (2016).
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73 

General Discussion 

Research goals 

This research aimed to explore and create new methodologies for optimal and practical real-

time operation of WDS. Two control schemes are considered: local and central. The local 

control scheme will be applied to a small operating zone with a small number of pumps and 

tanks, thus providing a practical solution for small-scale WDS. It utilizes simple mathematical 

algorithms which can run on a local PLC thus eliminating the need for high-performance 

computational hardware and software. The central control scheme is aimed to run at a control 

center and optimally operate larger WDS. Two main strategies were adapted to seek practical 

tools. First, considering real-world WDSs, it was shown that the explicit hydraulic behavior can 

be excluded from the optimization formulation thus eliminating the non-linearity of the 

problem. Second, the size of the optimization problem was reduced by using wise binary coding 

of the discrete decision variables in the optimization problem. This approach results in a MILP 

formulation with a relatively small number of Integer variables. These tools can provide a 

practical solution that can help large- as well as small-scale water utilities in utilizing advanced 

optimization methods to gain energy savings and more environmentally friendly operation 

strategies. 

Research contribution 

To date, only a limited number of water utilities use a closed-loop optimal pump operations 

control scheme. Many small water utilities do not have the know-how and the technical 

personnel to operate sophisticated optimization models. This research contributes to the water 

sector by developing practical methods for optimal operation of WDSs, the developed tools 

cover both small-scale and large-scale systems. From an academic perspective, previous work 

focused mainly on the open-loop operation while this research concentrates on a closed-loop 

control scheme with online feedback from the system in a rolling horizon mode. The tradeoff 

between the operation practicality and optimality has not been explored before in the literature 

since most of the previous work concentrated on the optimal solution for a given operation 

horizon without simulating the real-time behavior of the system in a close control loop. 
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Limitation and future work 

This research work is inspired by the overgrowing need for water utilities for practical operating 

tools. To that end, the methods, algorithms, and tools developed herein, aim to satisfy this need. 

However, this still is academic research, and the developed tools were not implemented, or 

tested, in a real-world operating environment which is a crucial requirement step before being 

used by water utilities. The main foreseen limitations of the methodologies developed are 

associated with the availability and quality of the required operating data in real-time. Data 

availability and its quality start with the single sensor (e.g., water level, pressure, pumps status, 

and flows). These digital and analog signals are then transferred to a PLC, or to a remote 

terminal unit (RTU), which can do some data processing (e.g., transfer the sensors' 4-20 mA 

output into the correct physical values). Then, the data is transmitted to other sites (e.g., central 

control center or neighboring facilities) via wired or wireless communication channels. Finally, 

the data arrives at the remote site or to the SCADA system in which further data processing and 

archiving are done. Only at this stage, the optimization program at the central control center 

can access the data. This long chain of data measurement, transfer, processing, and archiving is 

prone to data loss and distortion which may affect the performance of the optimization and its 

outcome. Thus, data validation and estimation are required to assure its availability and quality. 

In the control loop, after each optimization run, the decision for the first time step (i.e., one 

hour) is implemented and the system waits for the time step to pass before initiating the next 

optimization process. However, during this time step, some events may occur in the system that 

requires intervention. For example, tanks water levels can violate predefined constraints due to 

unforeseen low or high demand, pump failures, etc. To handle such cases, a system monitor 

component should be developed. 

In recent years, the energy sector has changed in two major aspects. The first is attributed to the 

growing share of diverse energy sources, mainly renewable sources (e.g., wind, and solar), and 

the second is attributed to the interconnectivity of large power grids across countries and 

continents. As a result, an advanced energy market has emerged. Nowadays, energy became a 

tradable commodity with diverse Spot prices and future contracts. Spot markets are public 

financial markets where commodities are traded for immediate delivery, while future contracts 

are agreements to trade commodities at a predetermined price and time in the future. WDSs are 

identified as one of the largest energy consumers. WDSs are also characterized by their ability 

to use water storage facilities for shifting energy use patterns through strategic pumping. Thus, 

water utilities can take advantage of the competitive energy market to reduce their operational 



75 

cost and increase profitability. In doing so, water utilities are looking for a delicate balance 

between the strategic purchase of long-term (e.g., monthly, yearly) energy contracts and real-

time scheduling of Spot market energy purchases (e.g., the inter-day and day-ahead). Yet,  

decision-makers and operators in water utilities lack practical tools to support their actions in 

face of the new energy pricing structures. As such, the developed methods presented in this 

research should be extended to facilitate the inclusion of these new energy markets. 
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A B S T R A C T

Hydraulic simulation tools, such as EPANET, are the primary tools for evaluating water distribution systems
performance. This work presents a first step towards demonstrating a simple and straightforward im-
plementation of plugins in the new EPANET GUI to facilitate plugins development by the water systems mod-
eling community. The paper shows the code structure and the basic functionalities of a custom plugin demon-
strated using three specific examples: Count, FireFlow, and Elevations plugins. A prototype repository, where
developers and users can share and download EPANET plugins is presented and discussed. EPANET plugins
framework can support knowledge transfer by increasing the visibility and usability of developed analytical tools
and software, thus providing benefits for researchers and practitioners. The proposed plugins are freely available
through GitHub.

Software availability

EPANET plugins are available from GitHub repository https://
github.com/eladsal/EPANET-Plugins/

EPANET plugins prototype repository is available at plugins.epanet.
net

System requirements EPANET-UI-MTP4r2.exe available at https://
github.com/USEPA/SWMM-EPANET_User_Interface/releases/tag/
MTP4r2

1. Introduction

Hydraulic simulation tools, such as EPANET (Rossman, 1994), are
the primary tools for evaluating Water Distribution Systems (WDS)
performance. The open-source EPANET is the most widely used soft-
ware for WDS hydraulic and water quality analysis for commercial and
research purposes. EPANET Graphical User Interface (GUI) enables the
end-user to create and edit a water network model, run steady state and
extended period simulations of the hydraulic and water quality dy-
namics in WDS. The first official release of EPANET by the U.S. En-
vironmental Protection Agency (USEPA) was in 1993 and the last of-
ficial release of EPANET was in 2008 (version 2.00.12). This version
allows the user to interact with EPANET and perform hydraulic simu-
lations through the GUI as well as through a Dynamic Link Library
(DLL) of functions that enables the developers programmatically link
EPANET engine with external software. In 2016, the Open Water

Analytics (OWA) community released a new EPANET version 2.1 under
the Open Source Project, which provides some performance improve-
ments, bug fixes, and usage features for the computational engine
(Water Analytics, 2018).

Since its original release, EPANET has been used across a multitude
of applications in WDS analysis, such as optimal design and operation
(Kapelan et al., 2005; Murphy et al., 1994; Ormsbee and Lansey, 2006;
Perelman et al., 2013; Savic and Walters, 2002; Xie et al., 2014; Zierolf
et al., 2002), leak detection and localization (Boulos and Aboujaoude,
2011; Martínez-Solano et al., 2017; Whitman et al., 2018), sensor pla-
cement (Eliades et al., 2014; Phillips et al., 2008) and system security
(Housh and Ohar, 2017, 2018). Over the years, several independent
efforts have been administrated to improve and extend the modeling
and simulation capabilities of EPANET. These efforts can be classified as
enhancing the: (1) computational engine and (2) GUI of EPANET. This
paper focuses on enhancing EPANET capabilities through the GUI. The
majority of research efforts have been predominantly focused on en-
hancing the modeling and computational engine. Some examples in-
clude the EPANET-MSX (Shang et al., 2008) for modeling multi-species
dynamics, EPANET-RTX (Hatchett et al., 2011) for real-time modeling
extension and EPANET-PDX (Siew and Tanyimboh, 2012) for pressure-
driven analysis in WDS. However, these and many other extensions
were not incorporated into the core EPANET libraries nor into the GUI,
and as a result, these projects are not widely adopted. In addition to
enhancing the computational engine, several prior works created aug-
mented versions of EPANET by creating new GUIs that resemble the
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original EPANET GUI and include the new features, e.g. EPANET-BAM
(Ho and Khalsa, 2009) to model incomplete mixing at cross-junctions,
EPANET-Z (Zonum Solutions, 2009) to include online maps display,
and IrrigatePlus (2017) to optimize irrigation system management.
However, the usability of these tools is limited since some tools have
not been released as open source and each tool requires a dedicated
GUI, hence requiring many different versions of EPANET for each
specialized functionality (Iglesias-Rey et al., 2017).

Noteworthy exception is the work by Iglesias-Rey et al. (2017),
which presented an architecture to exchange information between
EPANET and third-party applications, following the prototype of
SWMM software architecture (Rossman, 2015). Another noteworthy
effort is the new re-engineered EPANET GUI first released by the USEPA
in March 2016 (SWMM-EPANET UI, 2018a; b). The new EPANET GUI,
developed using Python scripting language, is intended to maintain the
original functionalities of the EPANET software (e.g. run hydraulic and
water quality simulations) as well as provide additional functionalities
such as scripting and plugins management. This paper explores the new
plugins framework of EPANET GUI.

Plugins are pieces of software, which extend the capabilities and
features of an already existing software. Predominantly, the existing
software is already compiled, and its source code is not affected by the
added plugins. Plugins are available for many common desktop and
web software. Web browsers (Google Chrome, 2018; Microsoft Edge,
2018) are a prominent example of software applications that allow
users to extend its basic functionalities with additional features such as
block ads, better protect privacy, or just personalize the look of the
browser. Many free and commercial engineering software utilize a
plugin platform, including ArcGIS, QGIS, and AutoCAD (AutoDesk.Inc
2015; Environmental Systems Research Institute (ESRI) 2011). Each
software hosts its plugins in a different way but largely the plugins are
centralized in one location. For example, the WordPress plugins are
hosted in a plugins repository with over 56,000 items (Wordpress,
2018), similarly to Mozilla Firefox (Mozilla, 2018) and the QGIS plu-
gins (QGIS, 2016) that are hosted in a centralized repository. By having
plugins in a centralized location, it makes it easier, on one hand, for the
users to find, review and download plugins, and on the other hand, for
the developers to maintain and support their plugins. Plugins frame-
work has become a standard approach in many applications to add new
features and enhance the basic capabilities.

The main two reasons for an application to support a plugin fra-
mework is to keep its size and complexity to a minimum and at the
same time, to allow the addition of new features and capabilities.
Furthermore, not all users need all the capabilities of all the plugins, as
such users can select plugins relevant to their specific application or
task. That is, plugins are optional and are not required to run the ori-
ginal application. Plugins framework enables third-party developers to
develop new features thus reducing the burden of the main application
developers. Plugins may even have a different software license than the
main application. While the main application may be an open source
software with a permissive software license (for example the MIT li-
cense (Open Source Initiative, 2018)), a plugin may have a more re-
strictive one, such as the GPL license (Negus, 2015). Furthermore,
plugins for commercial software can be either commercial such as the
Analytic Solver Optimization (Frontline Solvers, 2015) which extends
the basic features of the Excel Solver Add-in, or free such as the YALMIP
toolbox (Lofberg, 2004), which adds mathematical programming cap-
abilities for Matlab. In general, plugins framework offers a systematic
way to separate the software license and the business model of the main
application from these of the added plugins.

Advanced hydraulic modeling and analytics tools coupled with a
plugin framework within a user-familiar environment of EPANET create
an opportunity to transform how new models and techniques are being
developed, shared, and used in the water systems modeling community.
Plugin framework has already transformed a number of other software
applications in engineering, but the water systems modeling

community has been slow to adopt. Although myriad of modeling and
analytics tools evolving around EPANET and hydraulic modeling have
been developed, these typically remained limited to the domain of their
developers and are not being widely used. Furthermore, none of the
modeling advances have been incorporated in any official version of
EPANET and little efforts have been made to make these advances ac-
cessible to the typical end-user that relies on the EPANET GUI. Hence,
there is a gap between scientific progress and practical needs (Uber
et al. (2018) Sela and Housh, 2019). The changing paradigm of a
community-driven software development, as opposed to an individual-
driven product development, increases the need and motivates a more
collaborative development environment of models and software for
water systems modeling. The new EPANET GUI plugins framework can
help in bridging this gap and facilitates the integration of different tools
developed in the water systems modeling community under the
EPANET umbrella. By so doing, EPANET will leverage the different
models and tools, which are continuously being developed by the water
distribution systems analysis (WDSA) community, to benefit re-
searchers and practitioners and make these tools accessible to a wider
community of potential EPANET users.

The abovementioned new EPANET GUI (SWMM-EPANET UI,
2018a; b), developed as an open source project, is the first version of
the software to include plugins support framework. The goal of this paper
is two-fold: to motivate users/developers to use/develop plugins using the
new framework and to motivate the further development and improvement of
the plugin framework. We achieve our goal by developing three custom
plugins that demonstrate the capabilities of the EPANET plugins fra-
mework for advanced hydraulic analysis and provide the complete
codes for testing, reproduction, and development of new plugins
functionalities. Initial applications utilizing the new EPANET GUI
plugin environment were recently presented and discussed in the first
joint WDSA-CCWI conference, Canada 2018 (Kandjani et al., 2018;
Salomons et al., 2018). This paper presents the plugin framework
through detailed implementation examples. Then, a prototype plugins
repository is outlined, followed by conclusions and further develop-
ment needs.

2. The plugin framework in the EPANET GUI

The new EPANET GUI is being developed in Python, (2018), a high-
level, open-source programming language, coupled with QGIS, a free
and open-source geographic information system application. The new
EPANET GUI download and installation instructions as well as system
design overview and source code can be found on the USEPA GitHub
repository (SWMM-EPANET UI, 2018a) The new GUI, shown in Fig. 1,

Fig. 1. Screenshot of the new EPANET GUI.

L. Sela, et al.



resembles that of EPANET 2.00.12 with only few minor exceptions,
such as the navigation menu on the left-hand side of the screen and two
new Plugins and Scripting options in the main menu toolbar. The
downloadable files include several components related to the software,
which are stored in relevant sub-directories under the top-level source
directory, EPANET-UI, including examples, scripts and plugins.

The plugins are placed in the plugins sub-directory and each plugin
is placed in a dedicated folder. Each plugin contains a set of mandatory
settings and files and all plugins share a common set of management
options that prescribe the core program how to communicate and
control the plugin functionalities upon execution. Upon the initializa-
tion of the EPANET application, a search for available plugins is made
in the plugins directory under the application path. Each found plugin is
automatically added to the application main toolbar, Plugins, as shown
in Fig. 1. For illustration purposes, four available plugins are shown
(Fig. 3): Count, FireFlow, Import-Export GIS, and Summary. A plugin may
be activated by clicking its name on the Plugins dropdown menu. Each
plugin sub-folder must have a Python file named __init__.py (note the
double underscores before and after the init string). This init file should
include at least two variables: plugin_name (String) and plugin_create_-
menu (Boolean). The first is the plugin's name, also the same as the
name of its sub-directory, while the second variable indicates whether
the plugin will have its own menu once activated. In such case, a dic-
tionary for the menu items must be defined using a variable named
__all__ (note the double underscores before and after the all string).

Next, we briefly describe the data and model objects that are
available for the plugin. In the following sections, we provide snippets
of plugin codes demonstrating the available functionalities and provide
the complete codes in GitHub repository (https://github.com/eladsal/
EPANET-Plugins/) to inform similar efforts. The plugin framework
supported by EPANET is shown in Fig. 2. When the EPANET GUI pro-
gram is started, the main map form is initialized and loaded. The main
map object holds the entire data model of the EPANET project and,
after the hydraulic and water quality simulations are executed, the
output results. A reference to the main map object is passed to all the
plugins by the session object. The session object contains the project and
the output objects, which hold the network input and output data, re-
spectively, as shown in Fig. 2. The project object is conveniently
structured by sections according to the traditional EPANET .inp input
file format. For example, the project object includes the pipes sub-class,
which corresponds to the [PIPES] section in the EPANET input file, and
defines pipes’ properties such as name, inlet_node, outlet_node, dia-
meter, length, roughness, loss_coefficient, initial_status, and descrip-
tion. A full list of the EPANET input file sections format can be found in
the EPANET user manual (Rossman, 2000). The output object interacts
with the simulation engine and contains the simulation results for each
time step of the simulation period for all network elements organized
by the nodes and links sub-classes. The time series results can be ex-
tracted with the nodes.get_series() and the links.get_series() methods.

These results include demand, head, pressure, and quality values for
nodes, and flow, headloss, quality, status, and velocity for links. A de-
tailed description of available results from EPANET hydraulic and water
quality simulations is included in the program user manual (Rossman,
2000). In addition to the project and output objects, the session object
includes a set of basic methods for opening and saving network models
and running hydraulic and water quality simulations.

Before demonstrating the plugins, we show some of the basic
functionalities available to the developer to perform hydraulic simu-
lations as well as setting and extracting model parameters using a
prototype code listed in Table 1. In lines 1 and 2, the main session and
the project objects are defined. In line 3, net1.inp file is read into the
current session. Line 4 retrieves the base demand for node 22 using the
session.project.junctions.value method and line 5 assigns a new base de-
mand for node 22. The hydraulic simulation is performed in line 6 and
results are stored in the session.output object in line 7. Finally, in line 8,
the simulated pressures at node 22 are retrieved using the sessio-
n.output.get_series( ) method.

3. Examples for developing custom plugins

3.1. Plugin 1: Count

For illustrative purpose, a snippet of Python code for a simple plugin
named Count is given in Table 2. When activated, this plugin adds a new
menu to the main toolbar in the EPANET GUI with two sub-menus that
report the number of junctions and pipes in the water network that is
currently loaded in the GUI. Lines 1 and 2 in Table 2 are the name of the
plugin and menu creation, respectively, as mentioned above. Line 3
includes a dictionary of the plugin's sub-menus, as shown in Fig. 3. Line
4 is a standard Python declaration to import a “Message Box” object for
reporting. The main function of the plugin, run(), in line 5, is called
when the user clicks on one of the sub-menus. According to the user's
selection, one of the choices in lines 6 or 9 is executed, the number of
junctions or pipes are retrieved in lines 7 and 10, respectively, and
reported in lines 8 and 11. This code calls the session.project.junctions
object that retrieves the list of junctions in the open project of the
current session. To integrate the Count plugin with the main EPANET
application, a sub-directory Count needs to be created with the code
listed in Table 2 saved as __init__.py and placed under the Plugins sub-
directory under the main EPANET-UI directory (Fig. 4).

3.2. Plugin 2: Fire Flow

In this section, we demonstrate the FireFlow plugin, which conducts
a fire flow analysis in a WDS. Fire flow analysis is a common practice
used by water engineers to ensure protection is provided during fire
emergencies (Boulos et al., 2006; Xiao et al., 2014). The aim of a fire
flow analysis is to determine whether the required flow is available at

Fig. 2. EPANET plugins framework.
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fire hydrants while adequate pressures are maintained in the WDS
during the stress conditions. Most of the commercial hydraulic simu-
lation software include a fire flow analysis tool (Bentley, 2018; HCP,
2018; InfoWater, 2018). A basic feature of any fire flow analysis is to
determine the relationship between the available fire flow discharge at
a specific node in the network and the network-wide minimum pres-
sure. The pressure-demand relationship can be evaluated using a rating
curve. The rating curve is achieved by performing a series of hydraulic
simulations each time increasing the fire flow discharge at a given
network location and recording the minimum pressure in the WDS. This
process is repeated for each fire flow node in the network. Given a
rating curve, the network engineer or operator can evaluate the per-
formance of the WDS under different conditions. The current version of
EPANET GUI is designed to perform only a single hydraulic simulation
and does not offer a way to automate or run multiple hydraulic simu-
lations. Hence, for an EPANET GUI user, fire flow analysis is a tedious
process, which requires the engineer to repeatedly change the boundary
conditions, preform hydraulic simulations, and manually record and
process the pressures in response to changes in the fire flow conditions.
The fire flow analysis can be easily automated to perform multiple si-
mulations to calculate the fire flow rating curve through a plugin ex-
tension.

An open source FireFlow EPANET plugin was developed herein and
can be freely downloaded from a GitHub EPNAET-Plugins repository
(FireFlow, 2018). After the FireFlow plugin folder is downloaded and

Fig. 3. EPANET plugins menus and the Count plugin sub-menu.

Table 1
Hydraulic simulation prototype code.

Table 2
Count plugin code snippet.

Fig. 4. Schematic architecture of the Plugins sub-directory and the relevant
custom plugins: Count, FireFlow, and Elevations.
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placed in the EPANET Plugins directory, a new FireFlow menu will ap-
pear in the main EPANET GUI, as shown in Fig. 5.

After the user selects the “Analyze” option, a new window will
appear (Fig. 6) with the list of the junctions included in the network
model (in this example Net1.inp was used, see Fig. 1). To run the fire
flow analysis, the user selects the fire flow node to conduct the analysis,
along with three additional parameters: the minimum and maximum
fire flow discharge to analyze and the incremental step between the
minimum and maximum flows. After selecting the node and setting the
parameters, the user can click the “Run” button to perform the simu-
lations. Once the simulation runs are completed, the demand-pressure
rating curve is presented, the user may select additional nodes for the
fire flow analysis. Fig. 6 shows the FireFlow analysis window. Two
analyses were performed for nodes 22 and 32, respectively, ranging the
fire flow discharge from 0 to 1200 gpm. The top plot demonstrates the
change in the minimum pressures in the network as a response to in-
creasing the discharge in node 22. The minimum pressures gradually
decrease from 120 psi to 100 psi as the discharge increases to 900 gpm,
then the minimum pressure rapidly decrease to 10 psi, as fire flow
discharge increases to 1200 gpm. Similar analysis is performed for node
32 (bottom plot in Fig. 6), however the results show a rapid decrease in
minimum pressures reaching negative values as fire flow discharge
increases to 600 gpm. These results indicate that node 22 satisfies the
fire flow upper limit, whereas node 32 is sensitive to fire flow condi-
tions and does not satisfy the fire flow upper limit.

Table 3 shows a code snippet from the FireFlow plugin main code.
Line 1 is the main loop over the number of requested hydraulic simu-
lations based on the range of the fire flow discharge. In lines 2–3, the

current demand is calculated and assigned to the analyzed junction.
Then, a full hydraulic simulation is performed by calling the session.-
run_simulation() method (line 4), which performs both the hydraulic
and water quality simulations. The system's pressures are extracted
(lines 5–6) using the get_series() method. Finally, the demand and
minimum pressure are recorded in lines 7 and 8, respectively, which are
then plotted for the user. The FireFlow plugin is a simple example of
how the basic EPANET software may be extended via the plugins fra-
mework in order to add new capabilities to the program with new al-
gorithms and graphical user interface. The FireFlow plugin relies on
EPANET hydraulic simulator but does not alter the main code of
EPANET. Furthermore, the FireFlow plugin is optional and is not re-
quired to run the original application.

3.3. Plugin 3: Elevations

The process of building a hydraulic model typically originates from
a water utility's records on the location of network elements and
characteristics that are maintained in Geographic Information Systems
(GIS) (Deuerlein et al., 2015; Roma et al., 2015). However, most uti-
lities do not have detailed enough records of their pipeline infra-
structure and, additionally, some loss of information is inevitable when
transforming GIS pipeline records into hydraulic models. Hence, when
required information is not available, some estimates must be made in
order to assess the network pressures and hydraulic grade lines. Tra-
ditionally, commercial vendors are able to provide very accurate Digital
Elevation Model (DEM) of any given area, however, usually at a high
cost. Other companies, such as Google and Microsoft, provide a less

Fig. 5. New FireFlow drop-down menu which is created for performing automated fire flow analysis in EPANET GUI using the open source FireFlow plugin.

Fig. 6. GUI of the FireFlow plugin analysis.
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accurate DEM for a small fee, or in some cases, for free via their
mapping products, such as Google Maps and Bing Maps, respectively.
The third EPANET plugin developed in this work, the Elevations plugin,
uses the Google Maps elevations API to retrieve the elevation data for
the network nodes (Google Maps Platform, 2018). Table 4 shows a code
snippet from the main code of the Elevations plugin (the full plugin code
is available on GitHub). First, the list of junctions is extracted from the
session.project object (line 1). Then, the X and Y (longitude and latitude)
coordinates are extracted for each junction (line 3). In line 5 the URL
request with the Google Maps API is constructed and opened (line 6). It
should be noted that a private API Key is used for authentication. Line 7
executes a custom function, which extracts the elevation data from the
XML data structure returned by the Google Maps API to the elev vari-
able. Finally, the elevation data is assigned to the junction's elevation
property (line 8). This plugin demonstrates the possibility for the
EPANET software to interact with web-services to get and set data.

4. A prototype repository for EPANET plugins

Three prototype plugins were presented in the previous sections.
However, for a successful and sustainable transition to the plugins
framework there is a need for a centralized place where developers and
users can upload and download plugins and share information. A cen-
tralized plugins repository is common across many well-known appli-
cations such ArcGIS (2018), QGIS (2016), and Autodesk (2016). Fig. 7
shows a prototype repository for EPANET plugins, which can be used to
easily share plugin files between developers and users. The user could
find a list of available plugins, description, installation instructions, test
cases, and reviews by other users. The developer can find documenta-
tion, code snippets, and submission instructions. The users can evaluate
the published plugins, by providing feedback to the developers and the
WDSA community, and help determine how robust and reliable these
plugins are. Such a repository can provide a viable pathway towards
research transfer and dissemination of new scientific tools developed by
the WDSA community and help distributing these tools to the multitude
of EPANET users to enhance their hydraulic modeling and analysis
capabilities. This is especially true for users that rely on the user in-
terface who often cannot take advantage of advanced modeling tools
because these typically require advanced programming skills.

Moreover, such a repository can create new opportunities for ex-
changing information, ideas, and benchmarking related to computing
and analysis of WDSs as well as simplifying plugins implementation by
providing documentation, tutorials, and templates.

As the expectations for more transparent and reproducible research
are rising, there is an increasing pressure on the WDSA community to
adopt a more open and collaborative research and software develop-
ment. See for example the publication data policy in the leading jour-
nals of Environmental Modeling and Software (Elsevier, 2018), Water
Resources Research (American Geophysical Union, 2013), and Journal
of Water Resources Planning and Management (Rosenberg et al., 2018).
The EPANET-plugins framework can support achieving this goal, thus
providing benefits for the researchers and the practitioners. Certainly,
sharing research tools and making them accessible to the wider water
systems modeling community through plugins will not resolve all
modeling limitations of EPANET. Nevertheless, if successful, it could
result in hydraulic simulation improvements, active community en-
gagements and interest in EPANET software development (Uber et al.,
2018). The Count, FireFlow, and Elevations plugins presented here are
three simple examples of enhancement to current capabilities of
EPANET. Other pressing examples include automatic demand assign-
ment from raw billing data and smart meters into demand pattern
format for hydraulic modeling, robust GIS tools to transform GIS data
sets into hydraulic models, and pressure-driven modeling.

5. Conclusions

This work presents a first step towards demonstrating a straight-
forward implementation of plugins in the new EPANET GUI. The plugin
framework supported by EPANET through Python scripting program is
responsible for setting up the plugin environment. The plugins are in-
dependent components from the main EPANET software that can be
developed and distributed separately, and are not required to execute
the original application. Plugins integrated with the main EPANET
application can provide additional modeling and analysis functional-
ities that are not available in the current EPANET software, e.g. fire
flow analysis demonstrated in this work. Advanced hydraulic modeling
and analytics tools coupled with a plugin framework within a user-fa-
miliar environment of EPANET create an opportunity to transform how

Table 3
FireFlow plugin code snippet.

Table 4
EPANET Elevations plugin code snippet.
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new models and techniques are being developed, shared, and used in
the water systems modeling community. As the expectations for more
transparent and reproducible research are rising, EPANET-plugins fra-
mework can support knowledge transfer thus providing benefits for the
researchers and the practitioners.
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 תפעול אופטימלי בזמן אמת של מערכות אספקת מים באופן מעשי

 מאת: אלעד זלומונס

 תקציר

מהתושבים  85% -מהמערכות האלו מספקות מים ל 5% -מערכות מים. כ 52,000 -בארצות הברית קיימות כ

באירופה יחסים דומים קיימים גם . תושבים 3,300 -מהמערכות מספקות מים לפחות מ 95%בארה"ב בעוד 

ספקים מים נוספים.  1,000 -תאגידי מים בגדלים שונים ובנוסף יש כ 55 -ובמזרח הרחוק. בישראל ישנם כ

חלק לא מבוטל מהתאגידים וספקי המים הם בעלי מערכות אספקת מים קטנות יחסית עם מעט מתקני 

ילו עבור מערכות שאיבה ואגירה פשוטים. תפעול מערכות אספקת מים באופן אופטימלי ואוטומטי, אפ

פשוטות, עשוי להיות תהליך מורכב שכן הוא מצריך הערכת צריכת המים, ניסוח ופתרון בעיה מתמטית 

 :מורכבת בתדירות גבוה יחסית. בנושא זה, האתגרים העומדים בפני אנשי התאגידים הינם

אפילו אם . תרוב השיטות לחיזוי הצריכה דורשות סדרות נתונים היסטוריים ארוכו –זמינות מידע  •

 .קיימת בעייתיות בזמן שינויי צריכה גדולים זמיניםהנתונים 

הבעיות המתמטיות הנדרשות לפתרון הן לא לינאריות ולא קמורות הכוללות  –קושי חישובי  •

 .אופטימיזציה בשלמים לייצוג משתני פעולת המשאבות (פועל/דומם)

 אדם מקצועי.-אי קיום חדר בקרה מרכזי ומחסור בכוח •

נתן האתגרים לעיל, מטרת מחקר זה הינה לפתח מתודולוגיות מעשיות וחדשות לתפעול אופטימלי ויעיל בהי

 ניתנהשל מערכות מים תוך עמידה באילוצי הצריכה ואילוצים הידראוליים במערכת הפיזית. באופן כללי, 

כן, השיטות -כמועדיפות למתודולוגיות פשוטות, שאינן דורשות נתונים רבים והגדרות פרמטרים רבים. 

בעלות "חתימה מחשובית" נמוכה אשר לא יחייבו מערכות מחשוב ותקשורת מורכבות. למשל,  הינן פותחוש

במקום להסתמך על סדרות נתונים היסטוריים ארוכות לביצוע חיזוי צריכה, ניתן להסתמך על שיטה פשוטה 

זוי פשוטה כזאת בשילוב עם שמבוססת על נתוני צריכת המים בשבועות הקודמים. שימוש בשיטת חי

טכניקות אופטימיזציה לטיוב כללי התפעול מהווה פתרון פרקטי לבעיית התפעול המורכבת, פתרון זה לא 

 מחייב מערכות מחשוב ותקשורת מורכבות.

תפעול מערכת אספקת מים היא דוגמה ברורה לתחלופה בין עלות תפעול לבין אמינות המערכת. מצד אחד, 

ת, שואפים מפעילי המערכת לשמור את מפלסי המים בבריכות גבוהים ככל שאפשר על מנת בהיבט של אמינו

להתמודד היטב עם מצבי חירום ומצבי קיצון כגון תקלות, שריפות, הפסקות חשמל וכו'. מהצד השני, בהיבט 

יט את של חיסכון בהוצאות האנרגיה, חברות המים מעוניינות לנצל את נפחי האיגום הקיימים על מנת להס

הפעלת המשאבות לשעות בהן תעריפי האנרגיה נמוכים יותר. בניסיון לאזן את שתי המטרות הסותרות הללו, 

בדרך כלל כדי להבטיח את האמינות הנדרשת תוך מתן  יםמוגדר יםוהמקסימלי יםהמים המינימלי מפלסי

מוגדרים כדי למזער את אפשרות למפעיל לשנות את מפלסי המים של הבריכות בין המינימום והמקסימום ה

עלויות התפעול. הפעלה בתוך גבולות מוגדרים מראש יכולה להתבצע במערכי תפעול ובקרה שונים. אחד 



מהמאפיינים של מערכים אלה הוא המיקום הפיזי של הבקר. במובן זה, ניתן לשקול את שתי התצורות 

צא באתר כגון תחנת השאיבה או ) מערך בקרה מקומי בו בקר הפיקוד מותקן ונמ1הקיצוניות הבאות: 

) מערך בקרה מרכזי בו בקר הפיקוד מותקן במקום מרכזי כגון חדר בקרה ומפקד על מערכת 2הבריכה, או 

 .גדולה יותר

עבור מערך של תחנת שאיבה ובריכת מים, לולאת הבקרה הפשוטה ביותר מבוססת על הגדרות זמנים לצורך 

הדממתה. בצורת הפעלה לא שכיחה זו, מוגדר מראש זמן הפעלת הפעלת המשאבה וערכי לחץ לצורך 

המשאבה (כגון תחילתו של פרק הזמן בו תעריפי החשמל נמוכים). בעת השאיבה עולה מפלס המים בבריכה 

עד למפלס עליון עבורו נסגר מגוף הכניסה לבריכה. סגירת המגוף גורמת לעליית הלחץ בסניקת המשאבה עד 

תה. היתרון המרכזי של אופן הפעלה זה הוא בכך שאין צורך במערך תקשורת כלל בין לערך בו מופסקת פעול

תחנת השאיבה והבריכה וכל הפיקוד נעשה בתחנה עצמה. מצד שני, בקרה מבוססת זמן לא מאפשרת תגובה 

למקרים בהם ישנם שינויים בצריכה ולכן ייתכן ואופן הפעלה זה ידרוש עידכונים ידניים תכופים יחסית. 

) נפוצות מאד וכן עלות התקנתן ותחזוקתן נמוכה יחסית. גורם זה SCADAבימינו, מערכות פיקוד ובקרה (

הקטין את השימוש במערך הבקרה הקודם ואפשר שימוש במערכי בקרה מתקדמים יותר המבוססים על 

הפיקוד  תקשורת בין מתקני רשת אספקת המים. במערך זה, מפלס המים בבריכה משודר באופן קבוע לבקר

פי אלגוריתם -הנמצא בתחנת השאיבה אשר מתרגם את מצב הבריכה לפקודות הפעלה והדממה לתחנה על

הבקרה שנקבע בו מראש. מערך הבקרה הפשוט ביותר במצב זה עושה שימוש במפלסי הפעלה והדממה 

נרגיה כאשר קבועים. יחד עם זאת, מפלסי הפעלה והדממה קבועים אלו אינם מאפשרים חיסכון בהוצאות הא

). על מנת להתמודד עם חוסר היעילות של מפלסי קיים תעריף מבוסס זמן (כגון תעו"ז, תעריף עומס זמן

מפלסי הפעלה והדממה אשר משתנים בהתאם לזמני תעריפי החשמל ב בעבר השימוש צעוהפעלה והדממה ה

בוהים ומילוי הבריכות השונים. מערך בקרה זה מאפשר הורדת מפלסי הבריכות בזמנים בהם התעריפים ג

עלולה לגרום למקרים של  זו, שיפור ביעילות האנרגטית בשיטה יחד עם זאתבזמנים בהם הם נמוכים. 

מפלסי הפעלה והדממה  וצעוה ,בנוסףהפעלות והדממות תכופות אשר אינם רצויים במערכת אספקת המים. 

נות. מערך הבקרה המוצג לעיל הוא משתנים בצורת פונקציות לינאריות או אחרות בתקופות התעריף השו

, מסויימים שלמערך זה יתרונות תקן מקומית (כגון בתחנת השאיבה). למרותולמקרה בו בקר הפיקוד מ

החיסרון העיקרי שלו הוא אי היכולת לראות את המערכת בכללותה דבר היכול להתאפשר במקרה של מערך 

יכול לעשות שימוש באלגוריתמים מתוחכמים  בקרה מרכזי. כאשר בקר הפיקוד נמצא במקום מרכזי הוא

 הדורשים יכולת מחשוב גבוהה יותר.

מטרת מחקר זה הינה לפתח מתודולוגיות מעשיות וחדשות לתפעול אופטימלי ויעיל של מערכות מים תוך 

 עמידה באילוצי הצריכה ואילוצים הידראוליים במערכת הפיזית.

בקרה בכללותו במקום על כל אחד ממרכיביו בנפרד כפי ושם דגש על ביצועי מערך ההבמסגרת מחקר זה 

עדיפות למתודולוגיה פשוטה ומעשית, אשר נותנת  ניתנהשנעשה ברבים ממחקרים אחרים. במילים אחרות, 

ביצועים טובים אך לא מושלמים, על פני שיטות פתרון מורכבות בעלות חתימה מחשובית גבוהה הנותנות 

 :דדות עם האתגרים לעיל הינםתועלת שולית קטנה. דרכי ההתמו

דגש על שיטות לחיזוי הצריכה אשר מצריכות  ניתן –יישום של אלגוריתמים פשוטים לחיזוי צריכה  •

סדרות נתונים היסטוריות קצרות, פשוטות לחישוב ואשר מאפשרות תגובה לשינויים בצריכה 

 בזמנים קצרים.

בהשוואה למערכי בקרה מקומיים אשר הינם בעלי מידע  –פיתוח מערכי בקרה מקומיים ומרכזיים  •

מועט לגבי המערכת בכללותה וכן בעלי חתימה מחשובית נמוכה, מערכי הבקרה המרכזיים עשויים 



להיות בעלי יתרון בכך שהם "רואים" את כלל המערכת ויכולים לקחת בחשבון את מצב המערכת 

למנטים בה. יחד עם זאת, בדרך כלל מערכי בקרה מרכזיים נסמכים על שיטות על כלל הא

אופטימיזציה בכדי לפתור את בעיית התפעול אשר דורשים חתימה מחשובית גבוהה על מנת לרוץ 

בזמן אמת. למרות שעלויות האנרגיה יכולות להיות ממוזערות באמצעות שיטות מתוחכמות אלו, 

אה למערך בקרה מקומי, הופך אותן לפחות נפוצות. מערכי הבקרה רמת הסיבוכיות שלהן, בהשוו

המקומיים נפוצים יותר בזכות פשטותם ועמידותם מכיוון שאינם נסמכים על פרוטוקולי תקשורת 

מורכבים שכן רוב המידע הנדרש עבורם נמצא במקום וזמין עבורם באתר. יתרה מכך, מערכי 

ל בקר הפיקוד ליישום בתחנות השאיבה. במקרה הבקרה המקומיים מפותחים מראש ונשלחים א

זה, תכניות התפעול עשויות לפעול זמן רב ללא עדכון לפחות עד שיש שינוי מהותי במערכת אספקת 

שיטות עבור שני  פותחוהמים (כגון שינויים במשאבות, שינוי מהותי בצריכת המים וכו'). לפיכך, 

 מערכי הבקרה הללו:

o  מערך בקרה מקומי אשר יכול להיות מיושם על בקר פיקוד פותחראשית  –בקרה מקומית

מקומי ללא פיקוד מאתר מרכזי בזמן אמת. מערך זה הנו עבור אזור הידראולי קטן, כגון 

עבור תחנה אחת או שתיים ובריכה. מקרה זה הנו נפוץ מאד בתאגידים בעולם בכלל 

שות נמוכות של המידע ובישראל בפרט. המאפיינים המרכזיים של מערך בקרה זה הם דרי

 הדרוש וחתימה מחשובית נמוכה אשר אינה דורשת תוכנות אופטימיזציה מורכבות.

o  במיקום מרכזי, כגון חדר הבקרה, ישנה אפשרות להשתמש במשאבים –בקרה מרכזית

מחשוביים חזקים וקיים מידע רב יותר על מערכת אספקת המים. דבר זה מאפשר שימוש 

בשיטות חישוב ואלגוריתמים מתוחכמים יותר כולל בעזרת מערכות אופטימיזציה 

שתות אספקת מים גדולות. יחד עם זאת, ייעודיות, מסחריות או כאלו בקוד פתוח עבור ר

מחקר בישנם חסרונות מסוימים.  LP -ו NLP, MILPלמערכי בקרה המנוסחים כבעיות 

 והוראהברמות אומדן שונות (עם תוצאות מיטביות שונות)  MILPשימוש בניסוחי ה נבחן

טה. מו ,כי עבור תפעול בזמן אמת, התחלופה בין תוצאות מיטביות לבין יעילות הפתרון

כלומר, שיטה מקורבת עשויה לתת פתרון מעשי אך יחד עם זאת, לא לאבד רבות מטיב 

 הפתרון.

רוב המחקרים בנושא תפעול מערכות אספקת מים התרכזו בתכנון אופטימלי עבור תקופה נתונה  •

שעות ולא בלולאת הבקרה הסגורה עם משוב מהמערכת בתצורה של חלון זמן רציף. כמתואר  24כגון 

רק תוצאות צעד הזמן הראשון בתוכנית התפעול מבוצעות בפועל שכן לאחר מכן תהליך  לעיל,

התכנון חוזר על עצמו עבור צעד הזמן הבא. ניתן לומר שהמשאבים הרבים המושקעים במציאת 

פתרון לתקופה ארוכה למעשה "מתבזבזים" שכן הם לא מגיעים לעולם לידי יישום. לפיכך, ובניגוד 

 דגש על תהליך הבקרה הכולל בהיבט מעשי. ניתן למחקרים קודמים,

פיתוח שיטות מעשיות לתפעול מערכות אספקת מים תוך התמקדות במאפיינים תרומת מחקר זה היא ב

פיתוח כלים לתפעול יעיל של מערכות מים תוך התאמה למערכות , וכן הייחודים של תאגידי וספקי מים

תאגידי וספקי המים. כלים אלו, בעלי "חתימה מחשובית", נמוכה צפויים אשר בשימוש המחשוב והתקשורת 

לאפשר תפעול יעיל גם ללא ידע נרחב במערכות מחשוב ואוטומציה וללא השקעה רבה בציוד מחשוב נוסף. 

 ללא השקעה גדולה במערכת הפיזית. מיטביובכך, כלים אלה מאפשרים לתאגידים ליהנות מתפעול 
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